Synthesis of Distributed Algorithms with

Parameterized Threshold Guards

Igor Konnov

Marijana Lazi¢ Josef Widder Roderick Bloem

S~

(}(@Q“
L

T

v

OPODIS’17, December 2017

° R'SE
LOGICAL METHODS IN

EEEEEEEEEEEEE

|
Iogl COMPUTER SCIENCE Rigorous Systems Engineering A recimotooy oo

Verifying fault-tolerant systems Ty
safety critical systems: cars, planes, etc.
- rare but dangerous faults

- 3 to 7 processes

finite-state model checking
datacenters: thousands of computers

- faults happen every day

- 100—10,000 processes

parameterized model checking

Igor Konnov 2 of 32

Fault-tolerant distributed algorithms Ty

n processes communicate by sending messages
f processes are faulty (unknown)
t is an upper bound on f (known)

resilience condition on n, t, and f, eg.,.n>3tANt>Ff>0

Igor Konnov 3 of 32

Reliable broadcast service (informally) Ty

one process broadcasts a message bcast
correctness: if all correct processes received bcast, 111...1
then some correct process eventually accepts bcast

relay: if a correct process accepts bcast, 011...1
then all correct processes eventually accept bcast

unforgeability: if no correct process received bcast, 000...0
then no correct process ever accepts bcast

fairness: every sent message is eventually received

lgor Konnov 4 of 32

Reliable broadcast by Srikanth & Toueg 87 Ty

local myval; € {0,1} - did process i receive bcast?

while true do
iIf myvali =1 and not sent ECHO before

then send ECHO to all

If received ECHO from at least t + 1 distinct processes
and not sent ECHO before
then send ECHO to all

If received ECHO from at least n - t distinct processes

then accept
od

resilience: of n > 3t processes, f < t processes are Byzantine

lgor Konnov 5 of 32

Reliable broadcast by Srikanth & Toueg 87 Ty

local myval; € {0,1} - did pro--
a threshold guard

while true do
iIf myvali =1 and not sent ECHO before

then send ECHO to all

If received ECHO from at least distinct processes

and not sent ECHO before
then send ECHO to all

a threshold guard
iIf received ECHO from at least|n - t

then accept
od

resilience: of{n > 3t processes, f < tlprocesses are Byzantine

lgor Konnov 5 of 32

More threshold guards...

Reliable broadcast

Hybrid broadcast

Byzantine agreement

Non-blocking
atomic commitment
Condition-based
CONSEensus

Consensus in one
communication step

Byzantine one-step
consensus

X>t+1
xX>n-—t
X>tp+ 1
x> [5]+1
X>n
X>n—1
x> [3]+1
X>n-—1
X>n-—2t

[Srikanth, Toueg’86]

[Widder, Schmid’07]
[Bracha, Toueg’85]

[Raynal’'97], [Guerraoui’'01]

[Mostéfaoui, Mourgaya,
Parvedy, Raynal’03]

[Brasileiro, Greve,
Mostéfaoui, Raynal’03]

[Song, van Renesse’08]

In general, there is a resilience condition, e.g., n > 3t, n > 7t

lgor Konnov

6 of 32

Byzantine model checker

forsyte.at/software/bymc]

(source code, benchmarks, virtual machines, etc.)

10 parameterized fault-tolerant distributed algorithms:

ABA FRB CBGC, C1GS CF1S
STRB NBAC NBACG BOSCO
JACM'85 JACM'96 DSN’01 DSN’'06
DC’87 HASE'97 DC’02 DISC’08

[CAV’'15] & [POPL17]

From verification to synthesis

Different threshold guards for one sketch Ty

local myval; € {0,1} - did process i receive bcast?

while true do
iIf myvali =1 and not sent ECHO before
then send ECHO to all

If received ECHO from at least|t + 1 distinct processes

and not sent ECHO before
then send ECHO to all

If received ECHO from at least distinct processes

then accept
od

resilience: of n > 3t processes, f < t processes are Byzantine

lgor Konnov 9 of 32

Different threshold guards for one sketch Ty

local myval; € {0,1} - did process i receive bcast?

while true do
iIf myvali =1 and not sent ECHO before
then send ECHO to all
If received ECHO from at least & distinct processes
and not sent ECHO before
then send ECHO to all
istinct processes

iIf received ECHO from at least
then accept

od \/‘/

resilience: of n > 3t processes, f < t processes are Byzantine

lgor Konnov 9 of 32

Different threshold guards for one sketch Ty

local myval; € {0,1} - did process i receive bcast?
while true do
then send ECHO to all
If received ECHO from at least
and not sent ECHO before

then send ECHO to all

iIf received ECHO from at least
then accept

o A4

resilience: of n > 3t processes, f < t processes are Byzantine

lgor Konnov 9 of 32

Different threshold guards for one sketch Ty

local myval; € {0,1} - did process i receive bcast?
while true do
then send ECHO to all
If received ECHO from at least
and not sent ECHO before

then send ECHO to all

iIf received ECHO from at least
then accept
od

resilience: of n > 3t processes, f < t processes are Byzantine

lgor Konnov 9 of 32

Find thresholds automatically? Ty

local myval; € {0,1} - did process i receive bcast?

while true do
iIf myvali =1 and not sent ECHO before
then send ECHO to all N+ 2 t+ 23

—

If received ECHO from at least distinct processes

and not sent ECHO before

then send ECHO to all - 2%-n+ %1+
7
If received ECHO from at least] . distinct processes
then accept
od

resilience: of n > 3t processes, f < t processes are Byzantine

lgor Konnov 9 of 32

Synthesis loop Ty

Generator AA '_,i.!u- o v :) . ..‘.
infinite Gipl 4o Verifier

search space Byzantine MC

Synthesis problem Ty

Find a distributed algorithm that satisfies spec ¢

for all parameter values n, t, and f that satisfy resilience condition

Input:

if received ?y-n+ ?5-t+ ?3 echoes

sketch algorithm, then send echo to all

specification, e.g., unforgeability, correctness & relay

resilience condition, e.g.,n>3f,t>1f>0

Find (if exist): a{,...,ax € Q for?4,...,?

lgor Konnov 11 of 32

Formalizing pseudo-code Ty

Sketch threshold automata to capture the pseudo-code
Linear temporal logic to formalize the specifications

Linear integer arithmetic to express the resilience condition

lgor Konnov 12 of 32

Sketch threshold automata M

Byzantine faults:
run n — fi, processes,
count messages modulo Byzantine processes, e.g., x + f, > 7

lgor Konnov 13 of 32

Sketch threshold automata M

fp, < t, Byzantine and f; < f. crash faults:
run n — fi, processes,
resilience conditione.g. n > 3ty +2fc N tp > 0Nt >0

lgor Konnov 13 of 32

Linear temporal logic Ty

Relay:
If a correct process accepts bcast,
then all correct processes eventually accept bcast

lgor Konnov 14 of 32

Linear temporal logic Ty

~ T Relay:
== a correct process accepts bcast,

then all correct processes eventually accept bcast

and at least one process never accept bcast

lgor Konnov 14 of 32

Linear temporal logic Ty

~ 1 Relay:
#= a correct process accepts bcast

then all correct processes eventually accept becast

and at least one process never accepts bcast

E(F(RACCEPT?AO /\G("”\?V1 # 0V Kkyo #O\/HSENT?AO))/\GF wfair)

lgor Konnov 14 of 32

Linear temporal logic Ty

~ T Relay:
=+ a correct process accepts bcast

then all correct processes eventually accept bcast

and at least one process never accepts bcast

E(F(KJACCEPT#O /\G("‘?V1 ?AO\/"LVO #O\/KJSENT#O))/\GF wfair)

Propositional formulas: Temporal formulas:

(1) Apeske=0 = prop |Gy |Fy | YAy
(2) Vieske#0

(3) /\sgr\/eesﬁ?e?ﬁo
(4)

4) Bool(Guards) — (1) A (2) A (3) We call this fragment ELTLEgT

lgor Konnov 14 of 32

Our solution to synthesis

Synthesis loop Ty

Generator / Ty SN
Infinite s TS O\\)’\,\O(\ Verifier

search space ’ ‘ Byzantine MC

Termination? sane guards = bounded search space

Efficiency? Generator learns from counterexamples

Sane guards: thresholds lie in the interval [0, n]

Classic threshold guards:

if received 7 messages...V wait for a majority
if received t+1 messages... vV wait for a correct process

if received n—t messages...v wait for non-faulty processes

Syntactically correct but meaningless guards:
if received 2n messages... X

if received —5 messages... X

Search space for sane guards

Resilience condition:

Threshold:

lgor Konnov

n>3t>0

0 < 2an+2pt+2:<n

QD

|
c ~ O
IA A IA
NN N
ey
A A IA
® b o

O

18 of 32

Search space for sane guards

. . 0< ?2, <1
Resilience condition: n >3t >0
= —4 < ?, <4
Threshold: 0<?,n+ 2?2t +2?:<n 8< 2, <8
Theorem
Assume: n>) ;- and Vi.ti >0 — resilience cond.
1<i<k
0 < ?2an+ > ?p-ti+?: < n — threshold
1<i<k
Then:
(0 <?,< 1
{ —B, S?big B, forBi=90;+1 and 1 </ <Kk
\—C <?2:< C forC=k+14+2(61+--+ o)

lgor Konnov 18 of 32

From Q to a finite search space M

Synthesizing thresholds of the form £ or £°

Assume:
Resilience condition: n > 3t >0

Threshold: 0 < an+ bt+ C<n
Then

0< ?,<6-1

—6-4< ?,<6-4

-6-8< ?.<6-8

/ /
? 9b7 CeZ

lgor Konnov 19 of 32

Explicit enumeration? Ty

coefficients (?1, ?2, ?3, 24, ?5, ?¢) in reliable broadcast:

(2-9-17)? vectors

coefficients (0,?5,1,0,?5, 1) in reliable broadcast:

9 .9 vectors

coefficients (?1,?»,...,?9) in one-step consensus (BOSCO):

(3-17 - 33)° vectors

The generator should learn from the counterexamples!

lgor Konnov 20 of 32

Sketch of reliable broadcast in 2D M

4]
missing coefficients for . 3
=214+ 1 i

bounded search space

-4 -3 -2-10 1 2 3 4

lgor Konnov 21 of 32

Counterexample to unforgeability Ty

Model checker flags an error: 2, =0and 25 =0
n=4,t=1,and f =1 4]
3_
State 1. ko = 3, other counters 0 i:
0 *
Irr:0+1>0-1+4+1 —;
—3-
_4-| | | | | | | | |
Statez.liSENT:1,X:1,l€V0:2 -4 -3-2-10 1 2 3 4
Jrs:1+1>0-1+1
r3: X+f>2 -t+ 1
@3 X =~ &2 l—>X+:
: 2 .
State 3. kaccerr = 1, Ksent = 0 @r5'x+f2'5 t+1

lgor Konnov 22 of 32

Counterexample to unforgeability Ty

Model checker flags an error: 2, —0and 25 = 0
n=4,t=1,and f =1 .
3_
State 1. xyo = 3, other counters 0 i:
0- *
VLA S e e -1
Urg:041>2-1+1 N
_4-
State 2. kgent =1, X =1, Kyg =2 4 3-2-10 1 2 3 4
Yrs:14+1>0-1+1
r3: X+f>2 -t+1
Urs:1+1>2-1+1 Vo—— = ""EENT)
State3. I{ACCEPT:‘IJ’{’SENT:O (SEErs'X+fZ'5 t+1

lgor Konnov 29 of 32

Counterexample to unforgeability Ty

Model checker flags an error: 2, =0and 25 =0

n=4t=1,andf =1

State 1. kg = 3, other counters 0 *
Ur-0+120-1+1
lLI’3ZO—|—1Z?2-1—|—1

State2.I{,SENT:1,X:1,K‘,VO:2 4 -3 -2 -1 0 1 2 3 4
Y- 1+120-1+1

: f>% -t+1

lLI’5:1—|—1Z?5-1—|—1 @I’sX-i—_z —I-I—>X+

rg: X+1f>%-t+1

State 3. Kaccepr = 1, Kgent =0 SENT ACCEPT

Igor Konnov 22 of 32

Learning from counterexamples 1Y

4

3

2 *

1

0

-1

-2

-3

-4
-4 -3 -2 -10 1 2 3 4 -4 -3-2-10 1 2 3 4 -4 -3-2-10 1 2 3 4
1. unforgeabillity 2. sanity 3. correctness

-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4

4. sanity 5. relay 6. relay

found the solution 2>, = 1 and ?5 =2

Igor Konnov 23 of 32

Synthesis loop Ty

Generator AA '_,i.!u- o v :) . ..‘.
infinite Gipl 4o Verifier

search space Byzantine MC

Experiments

We have synthesized Ty

reliable broadcast, hybrid broadcast, and
BOSCO (one-step consensus) using

" i |

’

"= -

9‘\

©VSC / Claudia Blaas-Schenner

| forsyte.at/software/bymc |

WA
,,,,,,,,

Igor Konnov 26 of 32

Thresholds for Byzantine reliable broadcast v

local myval; € {0,1} 3 solutions
_ 16 seconds

LGRS 31 calls to verifier
iIf myvali =1 and not sent ECHO before

then send ECHO to all t 1 n— 2t

If received ECHO from at least distinct processes

and not sent ECHO before
then send ECHO to all n—-t
2t + 1
If received ECHO from at least istinct processes

then accept

od / /
resilience: f < t Byzantine faults

lgor Konnov 27 of 32

Thresholds for Byzantine reliable broadcast v

local myval; € {0,1}

while true do
iIf myvali =1 and not sent ECHO before
then send ECHO to all

0 solutions
/ seconds
25 calls to verifier

If received ECHO from at least distinct processes

and not sent ECHO before
then send ECHO to all

If received ECHO from at least distinct processes

then accept
od

resilience: < t Byzantine faults

lgor Konnov

27 of 32

Thresholds for hybrid reliable broadcast Ty

local myval;, € {0,1} 3 solutions
_ 50 seconds
while true do 34 calls to verifier

iIf myvali =1 and not sent ECHO before
then send ECHO to all

tp + 1 n_2tb‘2tc
If received ECHO from at least & distinct processes

and not sent ECHO before
then send ECHO to all ittt n—1t, —t.

iIf received ECHO from at least
then accept

od / /
resilience:|n > 3t, + 2t;| f, < 1, Byzantine and f, < f. crash faults

lgor Konnov 28 of 32

istinct processes

Thresholds for hybrid reliable broadcast Ty

local myval;, € {0,1} 0 solutions
_ 24 seconds
while true do 29 calls to verifier

iIf myvali =1 and not sent ECHO before
then send ECHO to all

If received ECHO from at least distinct processes

and not sent ECHO before
then send ECHO to all

If received ECHO from at least distinct processes

then accept

) EEE
resilience: w fp, < ty, Byzantine and f, < t, crash faults

lgor Konnov 28 of 32

Reliable broadcast: changing specifications Ty
< X

unforgeability: if =ae= correct process received bcast,
then no correct process ever accepts bcast

correctness and relay like before

X=2 X=t
no solutions for n > 3t no solutions for n > 3t
3 solutions forn > 3t + 2 3 solutions for n > 4t

each answer found in less than 12 sec.

lgor Konnov 29 of 32

BOSCO (one-step consensus) Ty

®A NSt < Tpo AS1 < Tp1 ASo+ > Tuo AS1+ > Tus

lbo
C;(SAASO"“fETD \
AN\ S1 < Tpo N St <TD1/\50+fZTUO/\}'

lgor Konnov 30 of 32

BOSCO: synthesis results Ty

Agreement\

.. > when n > 3t
Termlnatlon)

One step

.. ¢whenn>7t or n>5tf=0
Fast termlnatlon)

Found 4 solutions using 4 cluster nodes = 64 cores 24 min.

No solutions for n > 5t,f =0and n > 7t 40 min.

(the conditions n > 5t and n > 7 are tight)

lgor Konnov 31 of 32

Conclusions M

we can verify and synthesize distributed algorithms that are:

- asynchronous and parameterized, 5 '
- subject to faults, sending to all, and '-')

. . ,l [
- counting messages and comparing to threshold guards (3

next steps:

- learning from positive examples,
- geometrical structure of learned regions,
- synthesizing threshold automata, not just thresholds

 forsyte.at/software/bymc |

lgor Konnov 32 of 32

