Synthesis of Distributed Algorithms with

Parameterized Threshold Guards

Igor Konnov

Marijana Lazić Josef Widder Roderick Bloem

OPODIS'17, December 2017

VIENNA SCIENCE AND TECHNOLOGY FUND

Verifying fault-tolerant systems

safety critical systems: cars, planes, etc.

- rare but dangerous faults
- 3 to 7 processes

finite-state model checking

datacenters: thousands of computers

- faults happen every day
- 100-10,000 processes

parameterized model checking

Igor Konnov

Fault-tolerant distributed algorithms

n processes communicate by sending messages

f processes are faulty (unknown)

t is an upper bound on *f* (known)

resilience condition on *n*, *t*, and *f*,

Igor Konnov

Reliable broadcast service (informally)

one process broadcasts a message **bcast**

correctness: if all correct processes received bcast,	1111
then some correct process eventually accepts bcast	

relay: if a correct process accepts bcast,011...1then all correct processes eventually accept bcast

unforgeability: if no correct process received **bcast**, 000...0 then no correct process ever accepts **bcast**

fairness: every sent message is eventually received

Reliable broadcast by Srikanth & Toueg 87


```
local myval_i \in \{0, 1\}
                         - did process i receive bcast?
while true do
 if myval_i = 1 and not sent ECHO before
 then send ECHO to all
 if received ECHO from at least t + 1 distinct processes
    and not sent ECHO before
 then send FCHO to all
 if received ECHO from at least n - t distinct processes
 then accept
od
```

Reliable broadcast by Srikanth & Toueg 87

More threshold guards...

Reliable broadcast	$x \ge t + 1$ $x \ge n - t$	[Srikanth, Toueg'86]
Hybrid broadcast	$egin{aligned} x \geq t_b + 1 \ x \geq n - t_b - t_c \end{aligned}$	[Widder, Schmid'07]
Byzantine agreement	$x \ge \lceil \frac{n}{2} \rceil + 1$	[Bracha, Toueg'85]
Non-blocking atomic commitment	$x \ge n$	[Raynal'97], [Guerraoui'01]
Condition-based consensus	$x \ge n - t$ $x \ge \lceil \frac{n}{2} \rceil + 1$	[Mostéfaoui, Mourgaya, Parvedy, Raynal'03]
Consensus in one communication step	$x \ge n - t$ $x \ge n - 2t$	[Brasileiro, Greve, Mostéfaoui, Raynal'03]
Byzantine one-step consensus	$x \ge \lceil \frac{n+3t}{2} \rceil + 1$	[Song, van Renesse'08]

In general, there is a resilience condition, e.g., n > 3t, n > 7t

Igor Konnov

Byzantine model checker

forsyte.at/software/bymc

(source code, benchmarks, virtual machines, etc.)

10 parameterized fault-tolerant distributed algorithms:

[CAV'15] & [POPL'17]

From verification to synthesis

```
local myval_i \in \{0, 1\}
                           - did process i receive bcast?
while true do
 if myval_i = 1 and not sent ECHO before
 then send ECHO to all
 if received ECHO from at least t +
                                           distinct processes
    and not sent ECHO before
 then send ECHO to all
 if received ECHO from at least n
                                            distinct processes
 then accept
od
```


Find thresholds automatically?

Synthesis loop

Find $\mathbf{?}_1, \ldots, \mathbf{?}_k \in \mathbb{Q}$

Synthesis problem

Find a distributed algorithm that satisfies spec φ

for all parameter values *n*, *t*, and *f* that satisfy resilience condition

Input:

sketch algorithm, <u>if</u> received the send	ed $\mathbf{?}_1 \cdot \mathbf{n} + \mathbf{?}_2 \cdot \mathbf{t} + \mathbf{?}_3$ echoes echo to all
---	---

specification, e.g., unforgeability, correctness & relay

resilience condition, e.g., n > 3t, $t \ge f \ge 0$

Find (if exist): $a_1, \ldots, a_k \in \mathbb{Q}$ for $?_1, \ldots, ?_k$

Igor Konnov

Sketch threshold automata to capture the pseudo-code

Linear temporal logic to formalize the specifications

Linear integer arithmetic to express the resilience condition

Sketch threshold automata

Byzantine faults:

run $n - f_b$ processes,

count messages modulo Byzantine processes, e.g., $x + f_b \ge \tau_2$

Sketch threshold automata

 $f_b \leq t_b$ Byzantine and $f_c \leq t_c$ crash faults: run $n - f_b$ processes, resilience condition e.g. $n > 3t_b + 2t_c \land t_b \geq 0 \land t_c \geq 0$

Relay:

if a correct process accepts **bcast**,

then all correct processes eventually accept **bcast**

[¬] Relay:

if a correct process accepts bcast,
 then all correct processes eventually accept bcast
 and at least one process never accept bcast

Relay: if a correct process accepts bcast then all correct processes eventually accept bcast and at least one process never accepts bcast

$$\mathsf{E}\left(\mathsf{F}\left(\begin{array}{c} \kappa_{\mathsf{ACCEPT}} \neq 0 \end{array} \land \mathsf{G}\left(\begin{array}{c} \kappa_{\mathsf{V1}} \neq 0 \lor \kappa_{\mathsf{V0}} \neq 0 \lor \kappa_{\mathsf{SENT}} \neq 0 \end{array}\right)\right) \land \mathsf{GF} \psi_{\mathsf{fair}}\right)$$

Relay: if a correct process accepts bcast then all correct processes eventually accept bcast and at least one process never accepts bcast

$$\mathsf{E}\left(\mathsf{F}\left(\begin{array}{c} \kappa_{\mathsf{ACCEPT}} \neq 0 \\ \wedge \mathsf{G}\left(\begin{array}{c} \kappa_{\mathsf{V1}} \neq 0 \lor \kappa_{\mathsf{V0}} \neq 0 \lor \kappa_{\mathsf{SENT}} \neq 0 \\ \end{array}\right)\right) \land \mathsf{GF} \psi_{\mathsf{fair}}\right)$$

Propositional formulas:

(1) $\bigwedge_{\ell \in S} \kappa_{\ell} = 0$ (2) $\bigvee_{\ell \in S} \kappa_{\ell} \neq 0$ (3) $\bigwedge_{S \subseteq T} \bigvee_{\ell \in S} \kappa_{\ell} \neq 0$ (4) Bool(Guards) $\rightarrow (1) \land (2) \land (3)$ Temporal formulas:

$$\psi ::= prop \mid \mathbf{G} \psi \mid \mathbf{F} \psi \mid \psi \land \psi$$

We call this fragment $ELTL_{FT}$

Our solution to synthesis

Synthesis loop

Efficiency?

Find $\mathbf{?}_1, \ldots, \mathbf{?}_k \in \mathbb{Q}$

Generator learns from counterexamples

Sane guards: thresholds lie in the interval [0, *n*]

Classic threshold guards:

if received $\frac{n}{2}$ messages... \checkmark wait for a majorityif received t+1 messages... \checkmark wait for a correct processif received n-t messages... \checkmark wait for non-faulty processes

Syntactically correct but meaningless guards:

if received 2*n* messages... X

if received -5 messages... X

Search space for sane guards

Resilience condition:n > 3t > 0 $0 \le ?_a \le 1$ Threshold: $0 \le ?_a n + ?_b t + ?_c \le n$ \rightarrow $-4 \le ?_b \le 4$ $-8 \le ?_c \le 8$

Theorem

Assume: $n > \sum_{1 \le i \le k} \delta_i \cdot t_i$ and $\forall i. t_i \ge 0$ — resilience cond. $0 \le \mathbf{?}_a n + \sum_{1 \le i \le k} \mathbf{?}_{b_i} \cdot t_i + \mathbf{?}_c \le n$ — threshold

Then:

$$\begin{cases} 0 \leq \mathbf{?}_a \leq 1 \\ -B_i \leq \mathbf{?}_{b_i} \leq B_i & \text{for } B_i = \delta_i + 1 \text{ and } 1 \leq i \leq k \\ -C \leq \mathbf{?}_c \leq C & \text{for } C = k + 1 + 2(\delta_1 + \dots + \delta_k) \end{cases}$$

Search space for sane guards

Resilience condition:n > 3t > 0 $0 \le ?_a \le 1$ Threshold: $0 \le ?_a n + ?_b t + ?_c \le n$ \rightarrow $-4 \le ?_b \le 4$ $-8 \le ?_c \le 8$

Theorem

Assume:
$$n > \sum_{1 \le i \le k} \delta_i \cdot t_i$$
 and $\forall i. t_i \ge 0$ — resilience cond.
 $0 \le \mathbf{?}_a n + \sum_{1 \le i \le k} \mathbf{?}_{b_i} \cdot t_i + \mathbf{?}_c \le n$ — threshold

Then:

$$\begin{cases} 0 \leq \mathbf{?}_a \leq 1 \\ -B_i \leq \mathbf{?}_{b_i} \leq B_i & \text{for } B_i = \delta_i + 1 \text{ and } 1 \leq i \leq k \\ -C \leq \mathbf{?}_c \leq C & \text{for } C = k + 1 + 2(\delta_1 + \dots + \delta_k) \end{cases}$$

From ${\mathbb Q}$ to a finite search space

Synthesizing thresholds of the form $\frac{n}{2}$ or $\frac{2n}{3}$:

Assume:

Resilience condition: $n > 3t \ge 0$ Threshold: $0 \le \frac{\mathbf{2}'_a}{6}n + \frac{\mathbf{2}'_b}{6}t + \frac{\mathbf{2}'_c}{6} \le n$

Then

$$0 \leq \mathbf{?}'_a \leq 6 \cdot 1$$

 $-6 \cdot 4 \leq \mathbf{?}'_b \leq 6 \cdot 4$
 $-6 \cdot 8 \leq \mathbf{?}'_c \leq 6 \cdot 8$

?′_a, ?′_b, ?′_c ∈ ℤ

Explicit enumeration?

coefficients $(?_1, ?_2, ?_3, ?_4, ?_5, ?_6)$ in reliable broadcast:

 $(2 \cdot 9 \cdot 17)^2$ vectors

coefficients (0, 2, 1, 0, 5, 1) in reliable broadcast:

 $9 \cdot 9$ vectors

coefficients $(?_1, ?_2, \ldots, ?_9)$ in one-step consensus (BOSCO):

 $(3 \cdot 17 \cdot 33)^3$ vectors

The generator should learn from the counterexamples!

Igor Konnov

Sketch of reliable broadcast in 2D

missing coefficients for *t*: $\tau_1 = ?_2 \cdot t + 1$

 $\tau_2 = ?_5 \cdot t + 1$

bounded search space

Counterexample to unforgeability

n = 4, t = 1, and f = 1

State 1. $\kappa_{V0} = 3$, other counters 0

 $\Downarrow r_3: 0+1 \ge 0 \cdot 1+1$

State 2. $\kappa_{\text{SENT}} = 1$, x = 1, $\kappa_{\text{V0}} = 2$

 $\Downarrow r_5: 1+1 \ge 0 \cdot 1+1$

State 3. $\kappa_{\text{ACCEPT}} = 1$, $\kappa_{\text{SENT}} = 0$

2 = 0 and 2 = 0

Counterexample to unforgeability

Model checker flags an error:

n = 4, t = 1, and f = 1

State 1. $\kappa_{V0} = 3$, other counters 0

State 2. $\kappa_{\text{SENT}} =$ 1, x = 1, $\kappa_{\text{V0}} =$ 2

 $+r_5:1+1 \ge 0.1+1$

 $\Downarrow r_5: 1+1 > ?_5 \cdot 1+1$

 $2_{2} = 0$ and $2_{5} = 0$

State 3. $\kappa_{\text{ACCEPT}} = 1$, $\kappa_{\text{SENT}} = 0$

Igor Konnov

Counterexample to unforgeability

Model checker flags an error:

n = 4, t = 1, and f = 1

State 1. $\kappa_{V0} = 3$, other counters 0

State 2. $\kappa_{\text{SENT}} = 1$, x = 1, $\kappa_{\text{V0}} = 2$

 $2_2 = 0$ and $2_5 = 0$

Learning from counterexamples

found the solution $\mathbf{?}_2 = 1$ and $\mathbf{?}_5 = 2$

Igor Konnov

Synthesis loop

Find $\mathbf{?}_1, \ldots, \mathbf{?}_k \in \mathbb{Q}$

Experiments

We have synthesized

reliable broadcast, hybrid broadcast, and BOSCO (one-step consensus) using

[forsyte.at/software/bymc]

Igor Konnov

Thresholds for Byzantine reliable broadcast

resilience: n > 3t, $f \le t$ **Byzantine** faults

Thresholds for Byzantine reliable broadcast

Thresholds for hybrid reliable broadcast

resilience: $n > 3t_b + 2t_c$ $f_b \le t_b$ **Byzantine** and $f_c \le t_c$ **crash** faults

Thresholds for hybrid reliable broadcast

Reliable broadcast: changing specifications

unforgeability: if -no- correct process received bcast, then no correct process ever accepts bcast

< X

correctness and relay like before

no solutions for n > 3t

3 solutions for n > 3t + 2

X = t

no solutions for n > 3t

3 solutions for n > 4t

each answer found in less than 12 sec.

BOSCO (one-step consensus)

Agreement
Terminationwhen n > 3tOne step
Fast terminationwhen n > 7t or n > 5t, f = 0

Found 4 solutions using 4 cluster nodes = 64 cores 24 min.

No solutions for
$$n \ge 5t$$
, $f = 0$ and $n \ge 7t$ 40 min.

(the conditions n > 5t and n > 7 are tight)

Igor Konnov

Conclusions

we can **verify** and **synthesize** distributed algorithms that are:

- asynchronous and parameterized,
- subject to faults, sending to all, and
- counting messages and comparing to threshold guards

next steps:

- learning from positive examples,
- geometrical structure of learned regions,
- synthesizing threshold automata, not just thresholds

