
Synthesis of Distributed Algorithms with

Parameterized Threshold Guards

Igor Konnov

Marijana Lazić Josef Widder Roderick Bloem

OPODIS’17, December 2017

Verifying fault-tolerant systems

safety critical systems: cars, planes, etc.

- rare but dangerous faults

- 3 to 7 processes

finite-state model checking

datacenters: thousands of computers

- faults happen every day

- 100–10,000 processes

parameterized model checking

1
1
4

7
.1

A
ss
es
si
n
g
a
n
d
va
li
d
a
ti
n
g
th
e
st
a
n
d
a
rd

n
od
e
H
IT

S
d
es
ig
n

F
ig
u
re

7.
1:

D
A
R
T
S
p
ro
to
ty
p
e
b
oa
rd
,
co
m
p
ri
si
n
g
8
in
te
rc
on

n
ec
te
d
H
IT

S
ch
ip
s

Igor Konnov 2 of 32

Fault-tolerant distributed algorithms

n
? ? ?
t f

n processes communicate by sending messages

f processes are faulty (unknown)

t is an upper bound on f (known)

resilience condition on n, t , and f , e.g., n > 3t ∧ t ≥ f ≥ 0

Igor Konnov 3 of 32

Reliable broadcast service (informally)

one process broadcasts a message bcast

correctness: if all correct processes received bcast, 111 . . . 1
then some correct process eventually accepts bcast

relay: if a correct process accepts bcast, 011 . . . 1
then all correct processes eventually accept bcast

unforgeability: if no correct process received bcast, 000 . . . 0
then no correct process ever accepts bcast

fairness: every sent message is eventually received

Igor Konnov 4 of 32

Reliable broadcast by Srikanth & Toueg 87

� �
local myvali ∈ {0,1} - did process i receive bcast?

while true do
i f myvali = 1 and not sent ECHO before
then send ECHO to all

i f received ECHO from at least t + 1 distinct processes
and not sent ECHO before

then send ECHO to all

i f received ECHO from at least n - t distinct processes
then accept

od� �
resilience: of n > 3t processes, f ≤ t processes are Byzantine

a threshold guard

a threshold guard

Igor Konnov 5 of 32

Reliable broadcast by Srikanth & Toueg 87

� �
local myvali ∈ {0,1} - did process i receive bcast?

while true do
i f myvali = 1 and not sent ECHO before
then send ECHO to all

i f received ECHO from at least t + 1 distinct processes
and not sent ECHO before

then send ECHO to all

i f received ECHO from at least n - t distinct processes
then accept

od� �
resilience: of n > 3t processes, f ≤ t processes are Byzantine

a threshold guard

a threshold guard

Igor Konnov 5 of 32

More threshold guards. . .

Reliable broadcast
x ≥ t + 1
x ≥ n − t

[Srikanth, Toueg’86]

Hybrid broadcast
x ≥ tb + 1
x ≥ n − tb − tc

[Widder, Schmid’07]

Byzantine agreement x ≥ dn
2e+ 1 [Bracha, Toueg’85]

Non-blocking
atomic commitment

x ≥ n [Raynal’97], [Guerraoui’01]

Condition-based
consensus

x ≥ n − t
x ≥ dn

2e+ 1
[Mostéfaoui, Mourgaya,
Parvedy, Raynal’03]

Consensus in one
communication step

x ≥ n − t
x ≥ n − 2t

[Brasileiro, Greve,
Mostéfaoui, Raynal’03]

Byzantine one-step
consensus

x ≥ dn+3t
2 e+ 1 [Song, van Renesse’08]

In general, there is a resilience condition, e.g., n > 3t , n > 7t
Igor Konnov 6 of 32

Byzantine model checker
[
forsyte.at/software/bymc

]

(source code, benchmarks, virtual machines, etc.)

10 parameterized fault-tolerant distributed algorithms:

JACM’85

ABA

DC’87

STRB

JACM’96

FRB

HASE’97

NBAC

DSN’01

CBC, C1CS

DC’02

NBACG

DSN’06

CF1S

DISC’08

BOSCO

[CAV’15] & [POPL’17] C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
C
A
V
*
Ar

tifact *

A
E
C

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
O
P
L
*

Ar
tifact

*
A
E
C

From verification to synthesis

Different threshold guards for one sketch

� �
local myvali ∈ {0,1} - did process i receive bcast?

while true do
i f myvali = 1 and not sent ECHO before
then send ECHO to all

i f received ECHO from at least t + 1 distinct processes
and not sent ECHO before

then send ECHO to all

i f received ECHO from at least n - t distinct processes
then accept

od� �
resilience: of n > 3t processes, f ≤ t processes are Byzantine

3

t + 1

2t + 1

3

n − 2t

n − t

3

n − 2t

2t + 1

7

?

?

?1 · n + ?2 · t + ?3

?4 · n + ?5 · t + ?6

Igor Konnov 9 of 32

Different threshold guards for one sketch

� �
local myvali ∈ {0,1} - did process i receive bcast?

while true do
i f myvali = 1 and not sent ECHO before
then send ECHO to all

i f received ECHO from at least t + 1 distinct processes
and not sent ECHO before

then send ECHO to all

i f received ECHO from at least n - t distinct processes
then accept

od� �
resilience: of n > 3t processes, f ≤ t processes are Byzantine

3

t + 1

2t + 1

3

n − 2t

n − t

3

n − 2t

2t + 1

7

?

?

?1 · n + ?2 · t + ?3

?4 · n + ?5 · t + ?6

Igor Konnov 9 of 32

Different threshold guards for one sketch

� �
local myvali ∈ {0,1} - did process i receive bcast?

while true do
i f myvali = 1 and not sent ECHO before
then send ECHO to all

i f received ECHO from at least t + 1 distinct processes
and not sent ECHO before

then send ECHO to all

i f received ECHO from at least n - t distinct processes
then accept

od� �
resilience: of n > 3t processes, f ≤ t processes are Byzantine

3

t + 1

2t + 1

3

n − 2t

n − t

3

n − 2t

2t + 1

7

?

?

?1 · n + ?2 · t + ?3

?4 · n + ?5 · t + ?6

Igor Konnov 9 of 32

Different threshold guards for one sketch

� �
local myvali ∈ {0,1} - did process i receive bcast?

while true do
i f myvali = 1 and not sent ECHO before
then send ECHO to all

i f received ECHO from at least t + 1 distinct processes
and not sent ECHO before

then send ECHO to all

i f received ECHO from at least n - t distinct processes
then accept

od� �
resilience: of n > 3t processes, f ≤ t processes are Byzantine

3

t + 1

2t + 1

3

n − 2t

n − t

3

n − 2t

2t + 1

7

?

?

?1 · n + ?2 · t + ?3

?4 · n + ?5 · t + ?6

Igor Konnov 9 of 32

Find thresholds automatically?

� �
local myvali ∈ {0,1} - did process i receive bcast?

while true do
i f myvali = 1 and not sent ECHO before
then send ECHO to all

i f received ECHO from at least t + 1 distinct processes
and not sent ECHO before

then send ECHO to all

i f received ECHO from at least n - t distinct processes
then accept

od� �
resilience: of n > 3t processes, f ≤ t processes are Byzantine

3

t + 1

2t + 1

3

n − 2t

n − t

3

n − 2t

2t + 1

7

?

?

?1 · n + ?2 · t + ?3

?4 · n + ?5 · t + ?6

Igor Konnov 9 of 32

Synthesis loop

Find ?1, . . . ,?k ∈ Q

Generator
infinite

search space
Verifier

Byzantine MC

coefficients

counterexample

solution

Synthesis problem

Find a distributed algorithm that satisfies spec ϕ

for all parameter values n, t , and f that satisfy resilience condition

Input:

sketch algorithm, if received ?1 · n + ?2 · t + ?3 echoes
then send echo to all

specification, e.g., unforgeability, correctness & relay

resilience condition, e.g., n > 3t , t ≥ f ≥ 0

Find (if exist): a1, . . . ,ak ∈ Q for ?1, . . . ,?k

Igor Konnov 11 of 32

Formalizing pseudo-code

Sketch threshold automata to capture the pseudo-code

Linear temporal logic to formalize the specifications

Linear integer arithmetic to express the resilience condition

Igor Konnov 12 of 32

Sketch threshold automata

V0

V1

SENT ACCEPT

r3 : x + fb ≥ τ1 7→ x++

r1 :
true 7→

x++

r2 : x + fb ≥ τ2 7→ x++

r4 : x + fb ≥ τ2 7→ x++

r5 : x + fb ≥ τ2

τ1 = ?1 · n + ?2 · tb + ?3

τ2 = ?4 · n + ?5 · tb + ?6

CRASH

nc < fc 7→ nc++

nc <
fc 7→

nc++
nc < fc 7→ nc++

nc < fc 7→ nc++

Byzantine faults:
run n − fb processes,
count messages modulo Byzantine processes, e.g., x + fb ≥ τ2

Igor Konnov 13 of 32

Sketch threshold automata

V0

V1

SENT ACCEPT

r3 : x + fb ≥ τ1 7→ x++

r1 :
true 7→

x++

r2 : x + fb ≥ τ2 7→ x++

r4 : x + fb ≥ τ2 7→ x++

r5 : x + fb ≥ τ2
CRASH

nc < fc 7→ nc++

nc <
fc 7→

nc++
nc < fc 7→ nc++

nc < fc 7→ nc++

fb ≤ tb Byzantine and fc ≤ tc crash faults:
run n − fb processes,
resilience condition e.g. n > 3tb + 2tc ∧ tb ≥ 0 ∧ tc ≥ 0

Igor Konnov 13 of 32

Linear temporal logic

Relay:
if a correct process accepts bcast,
then all correct processes eventually accept bcast

E
(
F (κACCEPT 6= 0 ∧G (κV1 6= 0 ∨ κV0 6= 0 ∨ κSENT 6= 0))∧G F ψfair

)

Propositional formulas:

(1)
∧
`∈S κ` = 0

(2)
∨
`∈S κ` 6= 0

(3)
∧

S⊆T
∨
`∈S κ` 6= 0

(4) Bool(Guards)→ (1)∧ (2)∧ (3)

Temporal formulas:

ψ ::= prop | Gψ | Fψ | ψ ∧ ψ

We call this fragment ELTLFT

Igor Konnov 14 of 32

Linear temporal logic

¬ Relay:
if a correct process accepts bcast,
then all correct processes eventually accept bcast
and at least one process never accept bcast

E
(
F (κACCEPT 6= 0 ∧G (κV1 6= 0 ∨ κV0 6= 0 ∨ κSENT 6= 0))∧G F ψfair

)

Propositional formulas:

(1)
∧
`∈S κ` = 0

(2)
∨
`∈S κ` 6= 0

(3)
∧

S⊆T
∨
`∈S κ` 6= 0

(4) Bool(Guards)→ (1)∧ (2)∧ (3)

Temporal formulas:

ψ ::= prop | Gψ | Fψ | ψ ∧ ψ

We call this fragment ELTLFT

Igor Konnov 14 of 32

Linear temporal logic

¬ Relay:
if a correct process accepts bcast
then all correct processes eventually accept bcast
and at least one process never accepts bcast

E
(
F (κACCEPT 6= 0 ∧G (κV1 6= 0 ∨ κV0 6= 0 ∨ κSENT 6= 0))∧G F ψfair

)

Propositional formulas:

(1)
∧
`∈S κ` = 0

(2)
∨
`∈S κ` 6= 0

(3)
∧

S⊆T
∨
`∈S κ` 6= 0

(4) Bool(Guards)→ (1)∧ (2)∧ (3)

Temporal formulas:

ψ ::= prop | Gψ | Fψ | ψ ∧ ψ

We call this fragment ELTLFT

Igor Konnov 14 of 32

Linear temporal logic

¬ Relay:
if a correct process accepts bcast
then all correct processes eventually accept bcast
and at least one process never accepts bcast

E
(
F (κACCEPT 6= 0 ∧G (κV1 6= 0 ∨ κV0 6= 0 ∨ κSENT 6= 0))∧G F ψfair

)

Propositional formulas:

(1)
∧
`∈S κ` = 0

(2)
∨
`∈S κ` 6= 0

(3)
∧

S⊆T
∨
`∈S κ` 6= 0

(4) Bool(Guards)→ (1)∧ (2)∧ (3)

Temporal formulas:

ψ ::= prop | Gψ | Fψ | ψ ∧ ψ

We call this fragment ELTLFT

Igor Konnov 14 of 32

Our solution to synthesis

Synthesis loop

Find ?1, . . . ,?k ∈ Q

Generator
infinite

search space
Verifier

Byzantine MC

coefficients

counterexample

solution

Termination?

Efficiency?

sane guards⇒ bounded search space

Generator learns from counterexamples

Sane guards: thresholds lie in the interval [0,n]

Classic threshold guards:

if received n
2 messages... 3 wait for a majority

if received t + 1 messages... 3 wait for a correct process

if received n − t messages...3 wait for non-faulty processes

Syntactically correct but meaningless guards:

if received 2n messages... 7

if received −5 messages... 7

Search space for sane guards

Resilience condition: n > 3t > 0

Threshold: 0 ≤ ?an + ?bt + ?c ≤ n
⇒

0 ≤ ?a ≤ 1
−4 ≤ ?b ≤ 4
−8 ≤ ?c ≤ 8

Theorem
Assume: n >

∑
1≤i≤k

δi · ti and ∀i . ti ≥ 0 — resilience cond.

0 ≤ ?an +
∑

1≤i≤k
?bi · ti + ?c ≤ n — threshold

Then:




0 ≤ ?a ≤ 1
−Bi ≤ ?bi ≤ Bi for Bi = δi + 1 and 1 ≤ i ≤ k
−C ≤ ?c ≤ C for C = k + 1 + 2(δ1 + · · ·+ δk)

Igor Konnov 18 of 32

Search space for sane guards

Resilience condition: n > 3t > 0

Threshold: 0 ≤ ?an + ?bt + ?c ≤ n
⇒

0 ≤ ?a ≤ 1
−4 ≤ ?b ≤ 4
−8 ≤ ?c ≤ 8

Theorem
Assume: n >

∑
1≤i≤k

δi · ti and ∀i . ti ≥ 0 — resilience cond.

0 ≤ ?an +
∑

1≤i≤k
?bi · ti + ?c ≤ n — threshold

Then:




0 ≤ ?a ≤ 1
−Bi ≤ ?bi ≤ Bi for Bi = δi + 1 and 1 ≤ i ≤ k
−C ≤ ?c ≤ C for C = k + 1 + 2(δ1 + · · ·+ δk)

Igor Konnov 18 of 32

From Q to a finite search space

Synthesizing thresholds of the form n
2 or 2n

3 :

Assume:
Resilience condition: n > 3t ≥ 0

Threshold: 0 ≤ ?′a
6 n +

?′b
6 t + ?′c

6 ≤ n

Then
0 ≤ ?′a ≤ 6 · 1

−6 · 4 ≤ ?′b ≤ 6 · 4
−6 · 8 ≤ ?′c ≤ 6 · 8

?′a,?
′
b,?
′
c ∈ Z

Igor Konnov 19 of 32

Explicit enumeration?

coefficients (?1,?2,?3,?4,?5,?6) in reliable broadcast:

(2 · 9 · 17)2 vectors

coefficients (0,?2,1,0,?5,1) in reliable broadcast:

9 · 9 vectors

coefficients (?1,?2, . . . ,?9) in one-step consensus (BOSCO):

(3 · 17 · 33)3 vectors

The generator should learn from the counterexamples!

Igor Konnov 20 of 32

Sketch of reliable broadcast in 2D

V0

V1

SENT ACCEPT

r3 : x + fb ≥ τ1 7→ x++

r1 : true 7→ x++

r2 : x + fb ≥ τ2 7→ x++

r4 : x + fb ≥ τ2 7→ x++

r5 : x + fb ≥ τ2

missing coefficients for t :
τ1 = ?2 · t + 1
τ2 = ?5 · t + 1

bounded search space

4 3 2 1 0 1 2 3 4
4
3
2
1
0
1
2
3
4

Igor Konnov 21 of 32

Counterexample to unforgeability

Model checker flags an error:

n = 4, t = 1, and f = 1

State 1. κV0 = 3, other counters 0

⇓ r3 : 0 + 1 ≥ 0 · 1 + 1
bla

State 2. κSENT = 1, x = 1, κV0 = 2

⇓ r5 : 1 + 1 ≥ 0 · 1 + 1
bla

State 3. κACCEPT = 1, κSENT = 0

?2 = 0 and ?5 = 0

4 3 2 1 0 1 2 3 4
4
3
2
1
0
1
2
3
4

V0 SENT

SENT ACCEPT

r3 : x + f ≥ ?2 · t + 1 7→ x++

r5 : x + f ≥ ?5 · t + 1

Igor Konnov 22 of 32

Counterexample to unforgeability

Model checker flags an error:

n = 4, t = 1, and f = 1

State 1. κV0 = 3, other counters 0

⇓ r3 : 0 + 1 ≥ 0 · 1 + 1
⇓ r3 : 0 + 1 ≥ ?2 · 1 + 1

State 2. κSENT = 1, x = 1, κV0 = 2

⇓ r5 : 1 + 1 ≥ 0 · 1 + 1
⇓ r5 : 1 + 1 ≥ ?5 · 1 + 1

State 3. κACCEPT = 1, κSENT = 0

?2 = 0 and ?5 = 0

4 3 2 1 0 1 2 3 4
4
3
2
1
0
1
2
3
4

V0 SENT

SENT ACCEPT

r3 : x + f ≥ ?2 · t + 1 7→ x++

r5 : x + f ≥ ?5 · t + 1

Igor Konnov 22 of 32

Counterexample to unforgeability

Model checker flags an error:

n = 4, t = 1, and f = 1

State 1. κV0 = 3, other counters 0

⇓ r3 : 0 + 1 ≥ 0 · 1 + 1
⇓ r3 : 0 + 1 ≥ ?2 · 1 + 1

State 2. κSENT = 1, x = 1, κV0 = 2

⇓ r5 : 1 + 1 ≥ 0 · 1 + 1
⇓ r5 : 1 + 1 ≥ ?5 · 1 + 1

State 3. κACCEPT = 1, κSENT = 0

?2 = 0 and ?5 = 0

4 3 2 1 0 1 2 3 4
4
3
2
1
0
1
2
3
4

V0 SENT

SENT ACCEPT

r3 : x + f ≥ ?2 · t + 1 7→ x++

r5 : x + f ≥ ?5 · t + 1

Igor Konnov 22 of 32

Learning from counterexamples

4 3 2 1 0 1 2 3 4
4
3
2
1
0
1
2
3
4

4 3 2 1 0 1 2 3 4
4
3
2
1
0
1
2
3
4

4 3 2 1 0 1 2 3 4
4
3
2
1
0
1
2
3
4

1. unforgeability 2. sanity 3. correctness

4 3 2 1 0 1 2 3 4
4
3
2
1
0
1
2
3
4

4 3 2 1 0 1 2 3 4
4
3
2
1
0
1
2
3
4

4 3 2 1 0 1 2 3 4
4
3
2
1
0
1
2
3
4

4. sanity 5. relay 6. relay

found the solution ?2 = 1 and ?5 = 2
Igor Konnov 23 of 32

Synthesis loop

Find ?1, . . . ,?k ∈ Q

Generator
infinite

search space
Verifier

Byzantine MC

coefficients

counterexample

solution

Experiments

We have synthesized

reliable broadcast, hybrid broadcast, and
BOSCO (one-step consensus) using

&

c ©
V

S
C

/C
la

ud
ia

B
la

as
-S

ch
en

ne
r

[
forsyte.at/software/bymc

]

Igor Konnov 26 of 32

Thresholds for Byzantine reliable broadcast

� �
local myvali ∈ {0,1}

while true do
i f myvali = 1 and not sent ECHO before
then send ECHO to all

i f received ECHO from at least t + 1 distinct processes
and not sent ECHO before

then send ECHO to all

i f received ECHO from at least n - t distinct processes
then accept

od� �
resilience: n > 3t , f ≤ t Byzantine faults

3

t + 1

2t + 1

3

n − 2t

n − t

3

3 solutions
16 seconds
31 calls to verifier

n ≥ 3t

0 solutions
7 seconds
25 calls to verifier

Igor Konnov 27 of 32

Thresholds for Byzantine reliable broadcast

� �
local myvali ∈ {0,1}

while true do
i f myvali = 1 and not sent ECHO before
then send ECHO to all

i f received ECHO from at least t + 1 distinct processes
and not sent ECHO before

then send ECHO to all

i f received ECHO from at least n - t distinct processes
then accept

od� �
resilience: n > 3t , f ≤ t Byzantine faults

3

t + 1

2t + 1

3

n − 2t

n − t

3

3 solutions
16 seconds
31 calls to verifier

n ≥ 3t

0 solutions
7 seconds
25 calls to verifier

Igor Konnov 27 of 32

Thresholds for hybrid reliable broadcast

� �
local myvali ∈ {0,1}

while true do
i f myvali = 1 and not sent ECHO before
then send ECHO to all

i f received ECHO from at least t + 1 distinct processes
and not sent ECHO before

then send ECHO to all

i f received ECHO from at least n - t distinct processes
then accept

od� �
resilience: n > 3tb + 2tc , fb ≤ tb Byzantine and fc ≤ tc crash faults

tb + 1

2tb + tc + 1

3

tb + 1

n − tb + tc

3

n − 2tb − 2tc

n − tb − tc

3

3 solutions
50 seconds
34 calls to verifier

n > 3tb + tc

0 solutions
24 seconds
29 calls to verifier

Igor Konnov 28 of 32

Thresholds for hybrid reliable broadcast

� �
local myvali ∈ {0,1}

while true do
i f myvali = 1 and not sent ECHO before
then send ECHO to all

i f received ECHO from at least t + 1 distinct processes
and not sent ECHO before

then send ECHO to all

i f received ECHO from at least n - t distinct processes
then accept

od� �
resilience: n > 3tb + 2tc , fb ≤ tb Byzantine and fc ≤ tc crash faults

tb + 1

2tb + tc + 1

3

tb + 1

n − tb + tc

3

n − 2tb − 2tc

n − tb − tc

3

3 solutions
50 seconds
34 calls to verifier

n > 3tb + tc

0 solutions
24 seconds
29 calls to verifier

Igor Konnov 28 of 32

Reliable broadcast: changing specifications
≤ X

unforgeability: if no correct process received bcast,
then no correct process ever accepts bcast

correctness and relay like before

X = 2

no solutions for n > 3t

3 solutions for n > 3t + 2

X = t

no solutions for n > 3t

3 solutions for n > 4t

each answer found in less than 12 sec.

Igor Konnov 29 of 32

BOSCO (one-step consensus)

`0

`1

`SE0

`SE1

`D0

`D1

`U0

`U1

true 7→ s0++, s01++

true 7→ s1++, s01++

φA ∧ s0 + f ≥ τD0

φA ∧ s1 + f ≥ τD1

φA ∧ s1 < τD0 ∧ s1 < τD1 ∧ s0 + f ≥ τU0 ∧ s1 < τU1

φA ∧ s1 < τD0 ∧ s1 < τD1 ∧ s0 + f ≥ τU0 ∧ s1 + f ≥ τU1

φA ∧ s1 < τD0 ∧ s1 < τD1 ∧ s0 < τU0 ∧ s1 < τU1

φA ∧ s1 <
τD0 ∧ s1 <

τD1 ∧ s0 +
f ≥ τU0 ∧ s1 <

τU1

Igor Konnov 30 of 32

BOSCO: synthesis results

Agreement
Termination

}
when n > 3t

One step
Fast termination

}
when n > 7t or n > 5t , f = 0

Found 4 solutions using 4 cluster nodes = 64 cores 24 min.

No solutions for n ≥ 5t , f = 0 and n ≥ 7t 40 min.

(the conditions n > 5t and n > 7 are tight)

Igor Konnov 31 of 32

Conclusions

we can verify and synthesize distributed algorithms that are:

- asynchronous and parameterized,
- subject to faults, sending to all, and
- counting messages and comparing to threshold guards

next steps:

- learning from positive examples,
- geometrical structure of learned regions,
- synthesizing threshold automata, not just thresholds

[
forsyte.at/software/bymc

]

Igor Konnov 32 of 32

