Shape Formation by Programmable Particles

Giuseppe A. Di Luna¹, Paola Flocchini¹, Nicola Santoro², Giovanni Viglietta¹, and Yukiko Yamauchi³

¹ University of Ottawa, Canada

- ² Carleton University, Canada
 - ³ Kyushu University, Japan

Shape formation by Amoebots

- Programmable particles in a triangular grid
 [Derakhshandeh et al., SPAA 2014]
 - Move by expansion and contraction
 - Communicate via locally shared memory
 - Maintains constant size local memory

Initial shape

Shape formation by Amoebots

Our goal: Self-organization ability and crucial elements

- ✓ Class of formable shapes
- ✓ Minimum system requirement

Initial shape

Programmable matter

System that can change its physical properties in a programmable fashion

Robotic system

Swarm

- Distributed system models
 - Mobile robot model [Suzuki and Yamashita et al., SICOMP 1999]
 - Metamorphic robot model [Dumitrescu et al., ICRA 2002]
 - Population protocol model [Angluin et al., PODC 2004]
 - Amoebot model [Derakhshandeh et al., SPAA 2014]

Mobility and computing

Computation with limited resource, local interaction, and movement

Population of <u>finite-state agents</u> can **compute functions** in
 Presburger arithmetic [Angluin et al., Distributed Computing 2006]

Memory-less mobile robots can form a sequence of shapes,
 i.e., global memory [Das et al., Distributed Computing 2015]

Mobile robots can **break symmetry** in 3D space by deterministic movement [Yamauchi et al., JACM 2017]

Leader election in Amoebot model

[Derakhshandeh et al., DNA 2015]

- Elect one particle as a leader without any global information
- Randomized leader election algorithm
 - Elect a leader w.p. 1
 - Basic techniques
 - Circle orientation
 - Coin flip

Chirality and randomization are crucial assumptions

Shape formation in Amoebot model

[Derakhshandeh et al., SPAA 2016]

- Fast formation algorithm for specific shapes
 - Initial shape is a triangle
 - Final shape consists of triangles
 - \bigcirc $O(\sqrt{n})$ rounds (n: #particles)

- Leader is a seed for the final shape
 - Chirality and randomization are necessary [Derakhshandeh et al., DNA 2015]
- Sequential (centralized) scheduler is assumed

Our contribution

Formation of shapes consisting of triangles and edges

- Weaker assumptions

 - Without chirality -> Mirror image of the final shape
 - Deterministic algorithm -> Unformable shapes
 - Adversarial parallel scheduler
- We give a characterization of formable shapes

Contents

9

- 1. Model and problem
- 2. Unformable shapes
- 3. Shape formation algorithm
- 4. Summary and future directions

Geometric Amoebot model

[Derakhshandeh et al., DNA2015]

- System of anonymous particles in the triangular grid
- Each particle observes neighboring vertices and executes a common algorithm
 - Updates its internal state
 - Communicates with other particles
 - Moves to a neighboring vertex

Mobile particles in triangular grid

- Movement through two arrangements
 - On one vertex (Contracted)
 - On two neighboring vertices (Expanded)
- Each vertex is occupied by at most one particle
 - □ If two particles move to one vertex, adversary chooses one

Communication among particles

- Locally shared memory model
 - Heads of particles on neighboring vertices send/receive messages
 - Message is received or refreshed in the next step

Adversarial parallel scheduler

- At each time step, the scheduler activates some particles
 - Fairness: Each particle is activated infinitely many times
- Activated particles perform
 - Observation and message receipt
 - Computation with a common algorithm
 - Message transmission and movement

Observation

- Particle can observe each vertex neighboring to its head,
 i.e., whether it is occupied by (head/tail of) a particle
- Local port labeling of particles
 - Sequence of numbers starts from some port
 - Invariant irrespective of movement
 - Particles lack chirality, i.e., clockwise or counter-clockwise order

Shape formation problem

Form a shape equivalent to a given shape S_F irrespective of port labeling and the choice of adversary

- S_o is simply connected
- S_F is constant size and given to each particle

Terminal configuration is a translation, rotation, uniform scaling, reflection, or their combinations on S_F

Contents

- 1. Model and problem
- 2. Unformable shapes
- 3. Shape formation algorithm
- 4. Summary and future directions

Unbreakable symmetry

- Particles cannot break rotational symmetry
 - Adversary can activate symmetric particles simultaneously
 - Symmetric particles execute a common algorithm

Unbreakably 2-symmetric

Central particle can break symmetry

Unformable shapes

□ Particles cannot break symmetry of initial shape

Feasible pair (S_o, S_F)

- If here exists a shape formation algorithm A for initial shape S_o and final shape S_F
 - \square (S_o, S_F) is called a feasible pair
 - \square A is a (S_0, S_F) -shape formation algorithm

Impossibility

Let S_o be a simply connected unbreakably k_o -symmetric shape and S_F be an unbreakably k_F -symmetric shape. Then (S_o, S_F) is feasible only if k_F is a multiple of k_o .

Contents

- 1. Model and problem
- 2. Unformable shapes
- 3. Shape formation algorithm
- 4. Summary and future directions

Universal shape formation algorithm

- Works for any feasible pairs
 - Without any global information
 - n: #particles
 - Initial shape
 - With constant local memory
 - With constant message size

Universal shape formation algorithm

- Works for any feasible pairs
 - Without any global information
 - n: #particles
 - Initial shape
 - With constant local memory
 - With constant message size

Leader(s) conduct shape formation

Proposed algorithm

□ Phase 1: Leader election

□ Phase 2: Assignment

□ Phase 3: Formation

Phase 1: Leader election Overview

Deterministic leader election

If an initial shape is unbreakably k-symmetric, at most k leaders are elected

Phase 1: Leader election Erosion

Erosion reduces candidates from the border

- Starts from corner particles
- Stops with mutually adjacent 1, 2, or 3 candidates

Phase 1: Leader election

Erosion

- □ Erosion reduces candidates from the border
 - Starts from corner particles
 - Stops with mutually adjacent 1, 2, or 3 candidates

Phase 1: Leader election Spanning forest construction

- Each candidate constructs a tree rooted at itself
- Construction by propagation
 - Candidates start with "Tree" messages
 - Each non-candidate propagates "Tree" messages
 - With maintaining its parent and children

■ Feedback from the leaves with "Tree-done" messages

Phase 1: Leader election Handedness agreement and dissemination

- Preparation for the comparison of trees
 - Candidates agree handedness
 - Disseminate agreed handedness to tree descendants
- Necessary for leader election
 - Without agreed handedness, asymmetry is overlooked

By message exchange

Candidates send "Please select!" messages to its right friend

By message exchange

Candidates send "Please select!" messages to its right friend

By message exchange

By message exchange

- By movement
 - When no intermediate particle helps candidates

Phase 1: Leader election

Dissemination

 Agreed handedness is disseminated from parent to its children

By message exchange

By movement

All particles share a common handedness

Phase 1: Leader election

Election

- Candidates compare the shapes of their trees
 - By picking up one descendant at a time

If an initial shape is unbreakably k-symmetric, at most k leaders are elected

Phase 2: Assignment Overview

Particles simulate a Turing machine on lines to agree on

Phase 2: Assignment Line formation

- Each tree is transformed to a line
 - Leaf pioneer particle pulls ascendants along a directrix

Phase 2: Assignment Simulation of a Turing machine

- Line of particles is used as a tape of Turing machine
 - Leader is the head of TM
 - Non-leader particles form a finite tape

- Each leader can count and compute
 - n/k where k is #leaders
 - Scale factor (second-order polynomial in n/k)

Phase 2: Assignment Decomposition

When there are multiple leaders, scaled S_F is divided into equivalent pieces

- We introduce an adjacency of expanded vertices, edges, and triangles of scaled S_F
- Selection proceeds along this adjacency

Phase 2: Assignment Role assignment

Leader assigns roles to its descendants

- Final position
- Contracted or expanded

Phase 3: Formation

Particles form final shape with the guide of mobile leaders

Our results

Feasibility

Let S_o be a simply connected unbreakably k_o -symmetric shape consisting of sufficiently large number of particles and S_F be an unbreakably k_F -symmetric shape. Then (S_o, S_F) is feasible if k_F is a multiple of k_o .

- □ Number of necessary particles: $\Theta(m^3)$
 - \mathbf{m} : size of minimum representation of S_F
 - Because we allow expanded particles to appear in triangles
- □ Time complexity: $O(n^2)$ rounds
 - □ *n* :#particles
- □ Number of moves: $O(n^2)$ moves

Conclusion

- Shape formation by programmable particles
 - Larger class of shapes with weaker abilities
 - Final shape consisting of triangles and edges
 - Without chirality nor randomization
 - Under adversarial parallel scheduler
- Generalization
 - TM-computable shapes, e.g., Sierpinski triangles
 - Decision version with TM simulation
 - $\Box \Theta(m)$ particles for a final shape of size m
- Future work
 - Related problems in other programmable matter models (exploration, decomposition, arbitrary graphs, etc.)