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Shape formation by Amoebots

0 Programmable particles in a triangular grid
[Derakhshandeh et al., SPAA 2014]

Move by expansion and contraction
Communicate via locally shared memory
Maintains constant size local memory
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Shape formation by Amoebots
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Our goal: Self-organization ability and crucial elements

v" Class of formable shapes
v Minimum system requirement
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Programmable matter

System that can change its physical properties
in a programmable fashion
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Chemical reaction

Robotic system Swarm

Human society

o Distributed system models
Mobile robot model [Suzuki and Yamashita et al., SICOMP 1999]
Metamorphic robot model [Dumitrescu et al., ICRA 2002]
Population protocol model [Angluin et al., PODC 2004]
Amoebot model [Derakhshandeh et al., SPAA 2014]



Mobility and computing
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Computation with

limited resource, local interaction, and movement
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Population of finite-state agents can compute functions in
Presburger arithmetic [Angluin et al., Distributed Computing 2006]

Memory-less mobile robots can form a sequence of shapes,

i.e., global memory [Das et al., Distributed Computing 2015]

Mobile robots can break symmetry in 3D space by
deterministic movement [Yamauchi et al., JACM 2017]




| eader election in Amoebot model

[Derakhshandeh et al., DNA 2015]
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0 Elect one particle as a leader without any global
information

o Randomized leader election algorithm
Elect a leader w.p. 1

Basic techniques
m Circle orientation
m Coin flip

Chirality and randomization are crucial assumptions



Shape formation in Amoebot model

[Derakhshandeh et al., SPAA 2016]

o Fast formation algorithm for specific shapes
Initial shape is a triangle

Final shape consists of triangles ® ®
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o Leader is a seed for the final shape

Chirality and randomization are necessary
[Derakhshandeh et al., DNA 2015]

0 Sequential (centralized) scheduler is assumed



Our contribution

0 Formation of shapes consisting of triangles and edges

Weaker assumptions

= Without chirality -> Mirror image of the final shape
m Deterministic algorithm -> Unformable shapes

m Adversarial parallel scheduler

0 We give a characterization of formable shapes
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Geometric Amoebot model
[Derakhshandeh et al., DNA2015]
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0 System of anonymous particles in the triangular grid

0 Each particle observes neighboring vertices and
executes a common algorithm
Updates its internal state
Communicates with other particles
Moves to a neighboring vertex

:



Mobile particles in triangular grid

o Movement through two arrangements
On one vertex (Contracted)
On two neighboring vertices (Expanded)

o Each vertex is occupied by at most one particle
If two particles move to one vertex, adversary chooses one
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Communication among particles

o Locally shared memory model

Heads of particles on neighboring vertices
send/receive messages

Message is received or refreshed in the next step
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Adversarial parallel scheduler

o At each time step, the scheduler activates some particles
Fairness: Each particle is activated infinitely many times

o Activated particles perform
Observation and message receipt
Computation with a common algorithm
Message transmission and movement



Observation
[ ]

o Particle can observe each vertex neighboring to its head,
i.e., whether it is occupied by (head/tail of) a particle

0 Local port labeling of particles
Sequence of numbers starts from some port
Invariant irrespective of movement
Particles lack chirality, i.e., clockwise or counter-clockwise order



Shape formation problem
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Form a shape equivalent to a given shape S;

irrespective of port labeling and the choice of adversary
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Initial shape S, Final shape S; Terminal configuration
o S, is simply connected o Terminal configurationis a
0 S;is constant size and given to translation, rotation,
each particle uniform scaling, reflection,

or their combinations on S;
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Unbreakable symmetry

0 Particles cannot break rotational symmetry
Adversary can activate symmetric particles simultaneously
Symmetric particles execute a common algorithm
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Unbreakably 2-symmetric Central particle can break symmetry



Unformable shapes

o Particles cannot break symmetry of initial shape

Initial shape
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Final shape

Unbreakably
2-symmetric

Asymmetric
(Unbreakably
1-symmetric)

Unbreakably
3-symmetric



Feasible pair (S, S;)

0 If here exists a shape formation algorithm A for
initial shape S, and final shape S;

(S,, S¢) is called a feasible pair
Ais a(S,, Sg)-shape formation algorithm

(
Impossibility

Let S, be a simply connected unbreakably k,-symmetric
shape and S; be an unbreakably k.-symmetric shape.
Ghen (S,, S¢) is feasible only if k. is a multiple of k..
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Universal shape formation algorithm
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o Works for any feasible pairs

o Without any global information
m n: #particles
m [nitial shape

o With constant local memory

o With constant message size

Initial shape

Final shape



Universal shape formation algorithm

o Works for any feasible pairs

Without any global information
= n: #particles

m |nitial shape

With constant local memory

With constant message size

Leader(s) conduct shape formation

Initial shape Leader election Terminal shape
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Proposed algorithm

I
o Phase 1: Leader election
0 Phase 2: Assignment

0 Phase 3: Formation



Phase 1: Leader election

Overview
Ex

1 Deterministic leader election
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Reduce candidates Construct Leader election
by erosion spanning forest by comparing trees

If an initial shape is unbreakably k-symmetric,
at most k leaders are elected



Phase 1. Leader election
Erosion
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o Erosion reduces candidates from the border
Starts from corner particles
Stops with mutually adjacent 1, 2, or 3 candidates
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Phase 1. Leader election
Erosion
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o Erosion reduces candidates from the border
Starts from corner particles
Stops with mutually adjacent 1, 2, or 3 candidates
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Phase 1: Leader election

Spanning forest construction

0 Each candidate constructs a tree rooted at itself

o Construction by propagation

Candidates start with
“Tree” messages

Each non-candidate propagates
“Tree’” messages

= With maintaining its parent and children

0 Termination detection at candidates
Feedback from the leaves with “Tree-done” messages



Phase 1: Leader election

Handedness agreement and dissemination
E

o Preparation for the comparison of trees
Candidates agree handedness
Disseminate agreed handedness to tree descendants

o Necessary for leader election
Without agreed handedness, asymmetry is overlooked
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Phase 1: Leader election

Handedness agreement

0 By message exchange
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Candidates send
““Please select!”
messages to

its right friend
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Phase 1: Leader election

Handedness agreement

0 By message exchange
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Phase 1: Leader election
Handedness agreement
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Candidates send
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0 By message exchange
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Phase 1: Leader election
Handedness agreement
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Phase 1: Leader election

Handedness agreement

0 By movement
o When no intermediate particle helps candidates

Same
%;z handedness
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Phase 1. Leader election
Dissemination

o Agreed handedness is disseminated from parent to
its children

By message exchange By movement
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All particles share a common handedness



Phase 1: Leader election

Election

o Candidates compare the shapes of their trees
By picking up one descendant at a time
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Single leader Single leader 3 leaders

If an initial shape is unbreakably k-symmetric,
at most k leaders are elected



Phase 2: Assignment

Overview
I
Initial shape Final shape
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Phase 2: Assignment

Line formation
e

o Each tree is transformed to a line
o Leaf pioneer particle pulls ascendants along a directrix
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Phase 2: Assignment

Simulation of a Turing machine

0 Line of particles is used as a tape of Turing machine
Leader is the head of TM
Non-leader particles form a finite tape

Leadership and leader’s state are

transferred by a message
DO °
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o Each leader can count and compute

n/k where k is #leaders
Scale factor (second-order polynomial in n/k)
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Phase 2: Assignment
Decomposition

o When there are multiple leaders, scaled S; is divided into
equivalent pieces
coe &
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We introduce an adjacency of expanded vertices, edges, and
triangles of scaled S;

Selection proceeds along this adjacency




Phase 2: Assignment

Role assiﬁnment
sz

0 Leader assigns roles to its descendants
O

;

o Final position O
o Contracted or expanded



Phase 3: Formation

..
0 Particles form final shape with the guide of mobile leaders
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Our results

-

Let S, be a simply connected unbreakably k,-symmetric

shape consisting of sufficiently large number of particles

and S; be an unbreakably k.-symmetric shape. Then (S,, S¢)
Qs feasible if ki is a multiple of k. Y

Feasibility

, 3
o Number of necessary particles: O(m”)
M : size of minimum representation of S;
Because we allow expanded particles to appear in triangles
: : 2
0 Time complexity: O(n”) rounds . )
n :#particles cecece

o Number of moves: O(n”) moves ASYWPtOtlca”y
optimal




Conclusion

o Shape formation by programmable particles
Larger class of shapes with weaker abilities
= Final shape consisting of triangles and edges
m Without chirality nor randomization
m Under adversarial parallel scheduler

o Generalization
TM-computable shapes, e.g., Sierpinski triangles
Decision version with TM simulation
O(m)particles for a final shape of size m

o Future work

Related problems in other programmable matter models
(exploration, decomposition, arbitrary graphs, etc. )



