
Hardening Cassandra Against
Byzantine Failures
Roy Friedman and Roni Licher
Technion - Israel Institute of Technology

OPODIS 2017

Overview

In this research we:
● Analyze the presence of byzantine failures in Cassandra
● Suggest solutions to prevent them
● Iterate to improve common case performance
● Benchmark implementation

Cassandra

● Distributed Database
● Open Source
● Column Families

Cassandra

● Distributed Database
● Open Source
● Column Families
● Tunable Consistency
● Very Scalable

Cassandra

● Distributed Database
● Open Source
● Column Families
● Tunable Consistency
● Very Scalable

YCSB comparison [1]

[1] Cooper, Brian F., et al. "Benchmarking cloud serving
systems with YCSB." Proceedings of the 1st ACM symposium
on Cloud computing. ACM, 2010.

● Great performance

Cassandra

● Distributed Database
● Open Source
● Column Families
● Tunable Consistency
● Very Scalable
● Great performance
● Highly adopted:

Cassandra - The Ring

A

B

C

D

E

F

G

● Distributed Hash
Table

● Replication

Key K

Nodes B,C
& D store
keys in
range A & B
(RF=3)

● Full membership
view (gossip
based)

Cassandra - Client operations

A

B

C

D

E

F

G

Client decides the
number of nodes that
have to acknowledge
the operation Write(K,V)

hash(K)=2

Write(K,V)

Write(K,V)

Write(K,V)

Cassandra - Handling Failures - Hinted Handoff

A

B

C

D

E

F

G

On a node failure, the
proxy saves the value

Write(K,V)
Write(K,V)

Write(K,V)

Write(K,V)
Send K to C

C

Cassandra - Handling Failures - Anti-Entropy

● If a node is unresponsive
for long enough, the saved
hint might get deleted

● Nodes can exchange Merkle
Trees and sync (expensive)

● A value can be updated
during a Read-Repair

Assumptions for Byzantine Hardening

● Fewer than ⅓ of the nodes are Byzantine:

N = 3f+1

● Fully connected network
● Public Key Infrastructure and SSL
● Loosely synchronized clocks (not perfect)

Replication

● On writes, waiting for all nodes is not possible
● Quorums:

○ All read sets have to intersect with all write sets
○ In Cassandra majority is used:

Write Read

N=2f+1 W=f+1 R=f+1

f=1

Byzantine Replication?

Read 2 Read 6

f=1 2 2 6

Byzantine Replication

Using Byzantine quorums:
● Writes and reads intersect in at least one correct node

Write Read

f=1

N=3f+1 W=2f+1 R=2f+1

2 2 6

Digital Signatures

● A proof for the origin of the data
● Requires a shared key

Public Key Signatures:

A

Sign with a private key Verify with a public key

Symmetric Key Signatures:

A

Sign with a private key Verify with a private key

B

B cannot prove to a third party that he got a
message from A

Slow Fast

The Proxy - Plain Cassandra

The proxy cannot be trusted

Write Algorithm - Plain Cassandra

Client
Node1
(Proxy) Node2 Node3

Write K
Write K

Write KWrite K
ACK ACK

ACKACK

Write Algorithm - Hardened Cassandra (Option 1)

Client
Node1
(Proxy) Node2 Node3

Write K, Sign(K)
Write K

Write KWrite K
Sign(Sign) Sign(Sign) Sign(Sign)

3 Signatures

Node4

Sign(Sign)
Write K

Signatures are incorrect?
Write K, Sign(K)

Signatures and verifications (using only PKI):

Proxy:

Verify: 2f+1

Nodes:
Sign: 3f+1
Verify: 3f+1

Client:
Sign: 1
Verify: 2f+1

Total:
Sign: 3f+2
Verify: 7f+1

Write Algorithm - Hardened Cassandra (Optimization 1)

● Should the proxy verify the nodes signatures?

Node

Correct
Signature?

Signature

● No, if client isn’t happy, contact the proxy again...

Proxy
Signature

Write Algorithm - Hardened Cassandra (Optimization 1)

Client
Node1
(Proxy) Node2 Node3

Write K, Sign(K)
Write K

Write KWrite K
Sign(Sign) Sign(Sign) Sign(Sign)

3 Signatures

Node4

Sign(Sign)
Write K

Signatures and verifications (using only PKI):

Proxy:

Verify: 2f+1

Nodes:
Sign: 3f+1
Verify: 3f+1

Client:
Sign: 1
Verify: 2f+1

Total:
Sign: 3f+2
Verify: 5f+1

Total:
Sign: 3f+2
Verify: 7f+1

Write Algorithm - Hardened Cassandra (Optimization 2)

● Now, the nodes sign and only the client verify it…

● Switch to symmetric key signatures from nodes to client

Node

Sign for proxy
and client

Signature
Proxy

Signature

Sign for client

Write Algorithm - Hardened Cassandra (Optimization 2)

Client
Node1
(Proxy) Node2 Node3

Write K, Sign(K)
Write K

Write KWrite K
Sign(Sign) Sign(Sign) Sign(Sign)

3 Signatures

Node4

Sign(Sign)
Write K

Signatures and verifications:

Nodes:
Sign: 3f+1(s)
Verify: 3f+1(p)

Client:
Sign: 1(p)
Verify: 2f+1(s)

Total:
Sign: 3f+1(s) & 1(p)
Verify: 2f+1(s) & 3f+1(p)

Write Algorithm - Hardened Cassandra (Optimization 3)

● Still, not fast enough
● Switch to symmetric key signatures from client to nodes?

 A
Signature

Proxy
Signature

 A
Signature

● If new nodes join, how can they verify the signature?
● If a node misses a write, how can it trust his neighbours?
● How can the client know which nodes are responsible for

each value?
Using only symmetric signatures is tricky...

Write Algorithm - Hardened Cassandra (Optimization 3)

● Still, not fast enough
● Switch to symmetric key signatures from client to nodes?

 A
Signature

Proxy
Signature

 A
Signature

● If new nodes join, how can they verify the signature?
● If a node misses a write, how can it trust his neighbours?
● How can the client know which nodes are responsible for

each value?
Using only symmetric signatures is tricky...

Write Algorithm - Hardened Cassandra (Optimization 3)

● A client signs the value
with a public key
signature

Value

Public_Sign(V)

● Then, covers the value
and signature with
symmetric signatures,
one for each node

● A node will verify only the
symmetric signature and
store the public signature

Symmetric_Sign_Node1(V, PS)
Symmetric_Sign_Node2(V, PS)
Symmetric_Sign_Node3(V, PS)
Symmetric_Sign_Node4(V, PS)

 2
Verify:

Symmetric_Sign_Node2(V, PS)
Store:

Value, Public_Sign(V)

Write Algorithm - Hardened Cassandra (Optimization 3)

● Existing nodes will use only the symmetric signatures
● New nodes / outdated nodes will use the public key

signature

 2 42

I am new

V, PublicSign(V)

Write Algorithm - Hardened Cassandra (Optimization 3)

Client
Node1
(Proxy) Node2 Node3

Write K, Sign(K)
Write K

Write KWrite K
Sign(Sign) Sign(Sign) Sign(Sign)

3 Signatures

Node4

Sign(Sign)
Write K

Signatures and verifications:

Nodes:
Sign: 3f+1(s)
Verify: 3f+1(s)

Client:
Sign: 1(p) & 3f+1(s)
Verify: 2f+1(s)

Total:
Sign: 6f+1(s) & 1(p)
Verify: 5f+2(s)

Write Algorithm - Hardened Cassandra (Optimization 4)

● Left with only one public key signature
● Can we do it fast?

ECDSA (The Elliptic Curve Digital Signature Algorithm) RSA (Rivest, Shamir, and Adleman)

Fast Signing
Slow Verification

Slow Signing
Fast Verification

Read Algorithm - Plain Cassandra

Client
Node1
(Proxy) Node2 Node3

Read K

Data DigestIf all digests match,
returns data

Read K (digest)Read K (data)

On Digest mismatch
Read K (data)

Stale data
Resolve

Ack

Write Resolved

Resolved Data

Read Algorithm - Hardened Cassandra

Client
Node1
(Proxy) Node2 Node3

Read K

Data, signature SignatureIf all digests match,
returns data & signatures

Read K (digest)Read K (data)

On Digest mismatch
Read K (data)

Data
Resolve

Signature
Write Resolved

Resolved Data, Signatures &
all versions

Node4

Read K (digest)
Signature

Read K (data) Read K (data)
Stale data Data

Write Resolved
Signature

On failure, retrying with new proxy

Read Algorithm - Hardened Cassandra (Optimizations)

Same as in the write path:
● Proxy does not verify, client contacts it again if necessary
● Symmetric signatures from nodes to client

Client
Node1
(Proxy) Node2 Node3

Read K

Data, signature SignatureIf all digests match,
returns data & signatures

Read K (digest)Read K (data)

Node4

Read K (digest)
Signature

Signatures and verifications:
Nodes:
Sign: 2f+1(s)

Client:
Verify: 2f+1(s)

Total:
Sign: 2f+1(s)
Verify: 2f+1(s)

What about verifying the
data signature?

Performance - YCSB - Workload A - 50/50 Read/Writes - Achieved Throughput

Same as Cassandra, 5
years ago [YCSB paper]

Performance - YCSB - Workload A - 50/50 Read/Writes - Latency

RSA?

Performance - YCSB - Workload A - 50/50 Read/Writes - Achieved Throughput - More

Performance - YCSB - Workload A - 50/50 Read/Writes - Latency - More

Other issues in the Paper

● Byzantine clients

● Deleting values

● Column families

● Membership

Future Work

● Improve performance
○ Introduce real batching

● Support more functionalities
○ Lightweight transactions
○ Multi data-center operations

?

??

?

Questions?

??

? ?

Thank You

