Efficient and Modular Consensus-Free
Reconfiguration for Fault-Tolerant Storage

Fabiola Greve

Computer Science Department
Federal University of Bahia (UFBA), Brazil

Jointly with:
Eduardo Alchieri, Brasilia University (UnB), Brazil
Alysson Neves Bessani, Faculdade de Ciéncias, Universidade de Lisboa, Portugal
Joni Fraga, Federal University of Santa Catarina (UFSC), Brazil

20/12/2017 OPODIS 2017 1

Agenda

. Motivation

. System Model, Assumptions, System Properties
. View Generators

. Protocol for System Reconfiguration

. Experiments

. Conclusion

20/12/2017 OPODIS 2017

Introduction

Implement fault-tolerant shared memory in dynamic distributed
systems

— Shared memory : Quorum systems
— Dynamic system: Reconfiguration
Quorum-based protocols for R/W operations are appealing
— R/W operations are executed in a quorum of servers
Ensure consistency and availability of data stored in replicated servers

— Consistency — Quorum intersections: each quorum of servers
intersect

— Availability — There 1s always a quorum composed by correct
servers

20/12/2017 OPODIS 2017 3

Reconfiguration

. Reconfiguration 1s the process of changing the set of servers that
comprise the system

— Allows the administrator to deploy or to remove machines at
runtime

. Addition: to deal with increasing workloads
. Remove: replace old machines

— Improves system resilience
. By removing faulty servers

— Allows its use in many systems where, by their very nature, the set
of process that compose the system may change during its execution

. E.g.. MANETSs, P2P

20/12/2017 OPODIS 2017 4

Previous Consensus-Based Solutions

Dynamic quorum systems, relying on consensus for reconfigurations

Processes agree on the set of servers (view) supporting the storage

Rambo [Dist. Comput. 2010]
— Crash failure model

Framework proposed by Martin and Alvisi [DSN 2004]
- Byzantine failure model

Consensus 1s not necessary!

. Atomic shared memory emulation in static systems is possible without

consensus, ABD [JACM, 1995]

20/12/2017 OPODIS 2017 5

Previous Consensus-Free Solutions

. DynaStore [JACM, 2011]

+ Crash-tolerant dynamic memory that does not rely on consensus for
reconfigurations

— But, Reconfigurations and R/W protocols are strongly tied

— Performance worst than consensus-based solutions in synchronous
executions

. SmartMerge [DISC, 2015] and SpSn [DISC 2015]

+ Separate reconfiguration and R/W protocols

— But, they do not fully decouple them: for each R/W operation it 1s
necessary to check for view updates

— The design decision has a huge impact on performance

20/12/2017 OPODIS 2017 6

Our Contribution: FreeStore

Set of algorithms for implementing dynamic fault-tolerant atomic
storage

FreeStore decouples the execution of R/W protocols from
reconfigurations, significatively improving system performance

1. R/W Protocols

. Can be adapted from R/W protocols, even static protocols, €.g.,
ABD [JACM, 1995]

2. Reconfiguration Protocols (view updates)

. View Generators: capture agreement requirements for
generating new views

. Protocols to install generated views

20/12/2017 OPODIS 2017 7

Our Contribution: FreeStore

. Modularity

— Separation of concerns
— The View Generators abstraction to capture agreement requirements

. Efficiency

— Less communication steps than consensus-based and consensus-free
counterparts

. Simplicity

— Novel reconfiguration strategy that reduces the number of
intermediary installed views that a process must trasverse before
reaching a good view of updates

20/12/2017 OPODIS 2017 g

System Model and Assumptions

. Asynchronous distributed system composed by a universe U of
processes, that can be divided 1n two subsets:

— An infinite set I of Servers (each view contains 2f+ 1 servers to tolerate
up to f failures, and uses quorums of f+1 serves)

— An infinite set C of Clients

— Clients and Servers are prone to crash failures; Channels are reliable
. Infinite arrivals model with unknown but bounded concurrency
. Views: membership composed by a set of tuples

— «+,b:join of i

— «,D: leave of 1

— A view V' 1s more up-to-date than view W if the set of tuples in W'is a
subset of the set of tuples in ¥ (notation, W C V)

20/12/2017 OPODIS 2017 9

System Properties

Storage safety: the R/W protocols satisfy the safety properties of an atomic
R/W register, [Lamport, 1986]

Storage liveness: every R/W operation executed by a correct client
eventually complete

Reconfiguration - join safety: 1f a server j installs a view v . i € v, then server
i has mmvoked the join operation or i 1s member of the initial view

Reconfiguration — leave safety: 1f a server j installsaview v:i € v A
(Hv’:iev’ A v’ Cv),then server i has invoked the leave operation.

Reconfiguration — join liveness: eventually, operations are enabled at all
correct servers that had invoked the join operation.

Reconfiguration — leave liveness: eventually, operations are disabled at all
correct servers that had invoked the leave operation.

20/12/2017 OPODIS 2017 10

View Generators

Distributed oracles used by servers to generate sequences of views for
system reconfigurations

Each view v has an associated view generator, distributed
implemented by servers in v

Views are generated according to the following properties:

— Accuracy
. Strong: an unique view sequence 1s generated at all processes

. Weak: different view sequences can be generated at different
processes, but one sequence 1s contained in the other

— Termination: after initialization at process i, the view generator
eventually generates a new view sequence at i (unless it fails)

- Non-triviality: the views in some generated sequence are always
up-to-date than its associated view

20/12/2017 OPODIS 2017 1

Perfect View Generators

. Perfect View Generator (Strong Accuracy)

~ Needs consensus: which 1s impossible in asynchronous systems

— Protocol main idea: execute Paxos-like consensus protocol to
decide the new view sequence (containing just one view), in
partially synchronous systems

— View generator properties come directly from agreement and
termination properties of consensus

20/12/2017 OPODIS 2017 12

[ive View Generators

. Live View Generator (Weak Accuracy)

— Does not require consensus, possible in asynschronous systems

— Different sequences of views may be generated at different servers
for updating the same view v.

— Protocol main idea: processes exchange proposals, with the
composition of a new sequence for v, until they converge to a new
sequence (when a quorum made the same sequence proposal)

— Notice that: any quorum 1n the system will intersect in at least one
correct server

~ Thus, two different generated sequences S, and S, have the
following relation: S; C S, or S, C S,

20/12/2017 OPODIS 2017 13

Live View Generator

Two generated sequences:
S, =V,
S,=V,—V,

Servers #1 and #2 receive a quorum of equal 51 C 5,

proposals and generate a sequence Sl =S’1 Servers #1 and #2 receive a different proposal and
g’ IP | update therproposalsto S’; =V, —V,
| ==

? Mv)

IS«

All servers receive a quorum of equal proposals and
generate a sequence S, = S’;
20/12/2017 OPODIS 2017 14

Server #3 receives a different proposal and updates
its proposal to S’; =V, — V,

Reconfiguration using Live View Generators

% live view

generador
associated

with V,

live view
generator

associated
with V

init

Notice to deal with asynchrony, processes in V,; must execute
their view generators to obtain a new sequence
(even i1f V, 1s the next view in S,)

20/12/2017 OPODIS 2017 15

Dealing with Asynchrony

— generator

v

init

Case 1: processes in
V, receive S,, start
view generators
associated with V, and
install V,

V,— YV,

20/12/2017

associated
with V,

generator \‘, \/ " (
live view associated \0{{0/;{!(}A’(&’A
with V/, N WX

N
init /,\\//

X
I XK,

% live view

Case 3: Cases 1 and 2
concurrently

Vl é\]2 —> VZUWI

Case 2: generators
associated with V,
proposed a sequence
S = W, installed after V,

V,—=> W, —> V,UW,
Vi—=> W,
V,— V,UW,

OPODIS 2017 16

View Installation

. After a view sequence 1s generated, these views are “installed” one by
one 1n the system

— Actually, some views are auxiliary and only the last view in some
sequence 1s installed

. Two messages are necessary: first to inform all processes about a new
generated sequence and second for state update

— During state update, R/W operations are blocked
— When they are resumed, Clients are directed to the last installed view

— Using this approach, a Client only need to attach its current view in
the R/W protocol messages and servers must verify if it 1s up-to-date

. Other approaches need costly access to distributed oracles
(implemented by a set of static R/W registers)

20/12/2017 OPODIS 2017 17

Experimental Evaluation

. Two goals:

— Quantify FreeStore overhead when compared with static ABD

— Assess the negative impact of a reconfiguration in the performance
. Prototypes of FreeStore, ABD and DynaStore in Go

— We chose DynaStore to represent existing consensus-free approaches
to show that design decisions such as checking a set of static registers
to verify if some reconfiguration occurred before executing each
R/W, coupling the execution of R/W and reconfigurations, have a
significant impact in the performance

20/12/2017 OPODIS 2017 18

14
12
10

Latency (ms)

oOnN A~ O

Latency vs. Throughput without

8

Reconfiguration
Read Write
- ! ! ! ! ! ! ! — 14 - ! ! ! ! ! ! !]
Freestore = = = Freestore = = =
I Dynastore | > K Dynastore |
i ABD e 1 & 197 ABD e+]
-] a 8 -]
1 5 6t i
U _ S 4L _
= . 2 L R
B S R R A M 0 | | | | | | |
0O 2 4 6 8 10 12 14 16 0 1 2 3 4 5 6 7
Throughput (kops/sec) Throughput (kops/sec)
n=3, f=1

18 clients reading/writing a value of 512 bytes

20/12/2017

OPODIS 2017

19

15

1

Throughput (kops/sec)

3040 60 80

Reconfigurations and Faults

100 120 140 160 180 200 220 240 300 320 340 360

§+4§+5 g :

?1

iREC |

H H
L T I i

. . e W om - H N . .
...‘.....-.._.3-.-..-.....-.._..,_s.............g..‘.‘.n5.‘..-..,..*.......... T O LT o T A
. M M M N M - M .

2 | 4 46 M L3 ! ‘

: i(crash) : :(recovery) : 48 ;
49 6
iREC iREC ¢ :REC :REC ¢ :

R EE R E R I
e T e T e s e e s

..................................

“4 :
FreeStore = = = -
DynaStore =

0

60 80

i IR ERT LI L IRRRARTT CIRRRRRLITLIREr RRTTIINS
3040

100 120 140 160 180 200 220 240 300 320 340 360

Time (sec)

Initially: n=3, f=1
18 clients reading a value of 512 bytes

20/12/2017

OPODIS 2017

20

420

Conclusion

. FreeStore 1s a new approach to reconfigure fault-tolerant storage
systems, which clarify the differences between relying or not to
consensus for reconfiguration

— It 1s simpler and require less communications steps than previously
proposed solutions

— It decouples the execution of reconfigurations and R/W algorithms

. They can execute concurrently, only during state transfers r/w operations
are blocked (it i1s important to notice that in other approaches, R/W
operations do not finish before an updated view is installed)

. A client only need to attach its current view in the r/w messages and servers
must verify if it is up-to-date

. Experiments showed that this approach incorporates a negligible overhead
to the static ABD R/W protocol

. Future work: adapt other static R/W protocols to dynamic systems

20/12/2017 OPODIS 2017 1

20/12/2017

Thanks!

OPODIS 2017

22

