
20/12/2017 OPODIS 2017 1

Efficient and Modular Consensus-Free
Reconfiguration for Fault-Tolerant Storage

Fabíola Greve
Computer Science Department
Federal University of Bahia (UFBA), Brazil

Jointly with:
Eduardo Alchieri, Brasília University (UnB), Brazil
Alysson Neves Bessani, Faculdade de Ciências, Universidade de Lisboa, Portugal
Joni Fraga, Federal University of Santa Catarina (UFSC), Brazil

20/12/2017 OPODIS 2017 2

Agenda

● Motivation

● System Model, Assumptions, System Properties

● View Generators

● Protocol for System Reconfiguration

● Experiments

● Conclusion

20/12/2017 OPODIS 2017 3

● Implement fault-tolerant shared memory in dynamic distributed
systems

– Shared memory : Quorum systems
– Dynamic system: Reconfiguration

● Quorum-based protocols for R/W operations are appealing

– R/W operations are executed in a quorum of servers
● Ensure consistency and availability of data stored in replicated servers

– Consistency → Quorum intersections: each quorum of servers
intersect

– Availability → There is always a quorum composed by correct
servers

Introduction

20/12/2017 OPODIS 2017 4

● Reconfiguration is the process of changing the set of servers that
comprise the system

– Allows the administrator to deploy or to remove machines at
runtime

● Addition: to deal with increasing workloads
● Remove: replace old machines

– Improves system resilience
● By removing faulty servers

– Allows its use in many systems where, by their very nature, the set
of process that compose the system may change during its execution

● E.g.: MANETs, P2P

Reconfiguration

20/12/2017 OPODIS 2017 5

● Dynamic quorum systems, relying on consensus for reconfigurations

● Processes agree on the set of servers (view) supporting the storage

● Rambo [Dist. Comput. 2010]
– Crash failure model

● Framework proposed by Martin and Alvisi [DSN 2004]
– Byzantine failure model

● Consensus is not necessary!

● Atomic shared memory emulation in static systems is possible without
consensus, ABD [JACM, 1995]

Previous Consensus-Based Solutions

20/12/2017 OPODIS 2017 6

● DynaStore [JACM, 2011]
+ Crash-tolerant dynamic memory that does not rely on consensus for

reconfigurations
– But, Reconfigurations and R/W protocols are strongly tied
– Performance worst than consensus-based solutions in synchronous

executions

● SmartMerge [DISC, 2015] and SpSn [DISC 2015]
+ Separate reconfiguration and R/W protocols
– But, they do not fully decouple them: for each R/W operation it is

necessary to check for view updates
– The design decision has a huge impact on performance

Previous Consensus-Free Solutions

20/12/2017 OPODIS 2017 7

● Set of algorithms for implementing dynamic fault-tolerant atomic
storage

● FreeStore decouples the execution of R/W protocols from
reconfigurations, significatively improving system performance

1. R/W Protocols
● Can be adapted from R/W protocols, even static protocols, e.g.,

ABD [JACM, 1995]
2. Reconfiguration Protocols (view updates)

● View Generators: capture agreement requirements for
generating new views

● Protocols to install generated views

Our Contribution: FreeStore

20/12/2017 OPODIS 2017 8

● Modularity
– Separation of concerns
– The View Generators abstraction to capture agreement requirements

● Efficiency
– Less communication steps than consensus-based and consensus-free

counterparts

● Simplicity
– Novel reconfiguration strategy that reduces the number of

intermediary installed views that a process must trasverse before
reaching a good view of updates

Our Contribution: FreeStore

20/12/2017 OPODIS 2017 9

System Model and Assumptions
● Asynchronous distributed system composed by a universe U of

processes, that can be divided in two subsets:
– An infinite set Π of Servers (each view contains 2f+1 servers to tolerate

up to f failures, and uses quorums of f+1 serves)
– An infinite set C of Clients
– Clients and Servers are prone to crash failures; Channels are reliable

● Infinite arrivals model with unknown but bounded concurrency
● Views: membership composed by a set of tuples

– ‹+,i›: join of i
– ‹-,i›: leave of i
– A view V is more up-to-date than view W if the set of tuples in W is a

subset of the set of tuples in V (notation, W Ϲ V)

20/12/2017 OPODIS 2017 10

System Properties
● Storage safety: the R/W protocols satisfy the safety properties of an atomic

R/W register, [Lamport, 1986]

● Storage liveness: every R/W operation executed by a correct client
eventually complete

● Reconfiguration - join safety: if a server j installs a view v : i ϵ v, then server
i has invoked the join operation or i is member of the initial view

● Reconfiguration – leave safety: if a server j installs a view v : i v ˄
(Ǝv’ : i ϵ v’ ˄ v’ Ϲ v), then server i has invoked the leave operation.

● Reconfiguration – join liveness: eventually, operations are enabled at all
correct servers that had invoked the join operation.

● Reconfiguration – leave liveness: eventually, operations are disabled at all
correct servers that had invoked the leave operation.

20/12/2017 OPODIS 2017 11

View Generators
● Distributed oracles used by servers to generate sequences of views for

system reconfigurations
● Each view v has an associated view generator, distributed

implemented by servers in v
● Views are generated according to the following properties:

– Accuracy
● Strong: an unique view sequence is generated at all processes
● Weak: different view sequences can be generated at different

processes, but one sequence is contained in the other
– Termination: after initialization at process i, the view generator

eventually generates a new view sequence at i (unless it fails)
– Non-triviality: the views in some generated sequence are always

up-to-date than its associated view

20/12/2017 OPODIS 2017 12

Perfect View Generators
● Perfect View Generator (Strong Accuracy)

– Needs consensus: which is impossible in asynchronous systems
– Protocol main idea: execute Paxos-like consensus protocol to

decide the new view sequence (containing just one view), in
partially synchronous systems

– View generator properties come directly from agreement and
termination properties of consensus

20/12/2017 OPODIS 2017 13

Live View Generators

● Live View Generator (Weak Accuracy)

– Does not require consensus, possible in asynschronous systems
– Different sequences of views may be generated at different servers

for updating the same view v.
– Protocol main idea: processes exchange proposals, with the

composition of a new sequence for v, until they converge to a new
sequence (when a quorum made the same sequence proposal)

– Notice that: any quorum in the system will intersect in at least one
correct server

– Thus, two different generated sequences S1 and S2 have the
following relation: S1 Ϲ S2 or S2 Ϲ S1

20/12/2017 OPODIS 2017 14

Servers #1 and #2 receive a different proposal and
update their proposals to S’3 = V1 → V2

Two different sequences are proposed:
S’1 = V1 , V1 = {+1,+2,+3,+4}

S’2 = V2, V2 = {+1,+2,+3,+4,+5}

Two generated sequences:
S1 = V1

S2 = V1 → V2
S1 Ϲ S2

Live View Generator

1

2

3

S’1

S’1

S’2

All servers receive a quorum of equal proposals and
generate a sequence S2 = S’3

Servers #1 and #2 receive a quorum of equal
proposals and generate a sequence S1 = S’1

Server #3 receives a different proposal and updates
its proposal to S’3 = V1 → V2

20/12/2017 OPODIS 2017 15

Reconfiguration using Live View Generators

Processes #4 and #5 asked for a joinThe view generator is initializedView V1 is installedTwo sequences are generated:
S1 = V1, V1={+1,+2,+3,+4}

S2 = V1 → V2, V2={+1,+2,+3,+4,+5}

Generated sequence:
S3 = V2

Processes exchange messages
to install V1 (through sequence S1)

Processes in V1 receive S2 and execute
their view generators

View V2 is installed (through sequence S3)
Notice to deal with asynchrony, processes in V1 must execute

their view generators to obtain a new sequence
(even if V2 is the next view in S2)

1

2

3

4

5

live view
generator
associated
with Vinit

live view
generador
associated

with V1

Vinit

20/12/2017 OPODIS 2017 16

Case 1: processes in
V1 receive S2, start

view generators
associated with V1 and

install V2

V1 V2

Case 2: generators
associated with V1

proposed a sequence
S = W1, installed after V1

V1 W1

Case 3: Cases 1 and 2
concurrently

V1 V2 V2 U W1

V1 W1 V2 U W1

V1 V2 U W1

Dealing with Asynchrony

1

2

3

4

5

live view
generator
associated
with Vinit

live view
generator
associated

with V1

Vinit

20/12/2017 OPODIS 2017 17

View Installation
● After a view sequence is generated, these views are “installed” one by

one in the system
– Actually, some views are auxiliary and only the last view in some

sequence is installed
● Two messages are necessary: first to inform all processes about a new

generated sequence and second for state update
– During state update, R/W operations are blocked
– When they are resumed, Clients are directed to the last installed view
– Using this approach, a Client only need to attach its current view in

the R/W protocol messages and servers must verify if it is up-to-date
● Other approaches need costly access to distributed oracles

(implemented by a set of static R/W registers)

20/12/2017 OPODIS 2017 18

Experimental Evaluation

● Two goals:
– Quantify FreeStore overhead when compared with static ABD

– Assess the negative impact of a reconfiguration in the performance

● Prototypes of FreeStore, ABD and DynaStore in Go
– We chose DynaStore to represent existing consensus-free approaches

to show that design decisions such as checking a set of static registers
to verify if some reconfiguration occurred before executing each
R/W, coupling the execution of R/W and reconfigurations, have a
significant impact in the performance

20/12/2017 OPODIS 2017 19

Latency vs. Throughput without
Reconfiguration

Read Write

n=3, f=1
18 clients reading/writing a value of 512 bytes

FreeStore imposes a negligible overhead to ABD
(only the current view must be attached in r/w messages)

20/12/2017 OPODIS 2017 20

Reconfigurations and Faults

Initially: n=3, f=1
18 clients reading a value of 512 bytes

FreeStore significantly outperforms DynaStore
• Mean time for FreeStore reconfiguration: 19ms
• r/w blocked in FreeStore for only 4ms

20/12/2017 OPODIS 2017 21

Conclusion
● FreeStore is a new approach to reconfigure fault-tolerant storage

systems, which clarify the differences between relying or not to
consensus for reconfiguration

– It is simpler and require less communications steps than previously
proposed solutions

– It decouples the execution of reconfigurations and R/W algorithms
● They can execute concurrently, only during state transfers r/w operations

are blocked (it is important to notice that in other approaches, R/W
operations do not finish before an updated view is installed)

● A client only need to attach its current view in the r/w messages and servers
must verify if it is up-to-date

● Experiments showed that this approach incorporates a negligible overhead
to the static ABD R/W protocol

● Future work: adapt other static R/W protocols to dynamic systems

20/12/2017 OPODIS 2017 22

Thanks!

