
Non-uniform Replication

Gonçalo Cabrita and Nuno Preguiça
NOVA LINCS
OPODIS’17, Lisbon, Portugal,
18-20 December 2017



Context

• Increase in user activity has forced services to find new ways to scale
• Several services store their data in geo-replicated key-value stores
• These data stores sacrifice strong consistency for high availability

1



Problem

• Information stored in these data stores increases rapidly
• It is typically impossible to maintain all the data in all replicas
• Some systems adopt a partial replication model

2



Example

3



Example: Top-1 (partial replication)










4



Example: Top-1 (partial replication)

ADD(Mary, 90) @ 1
Mary, 90









4



Example: Top-1 (partial replication)

ADD(Mary, 90) @ 1
Mary, 90







Mary, 90


4



Example: Top-1 (partial replication)


Mary, 90







Mary, 90


4



Example: Top-1 (partial replication)

ADD(Amy, 80) @ 2, ADD(John, 85) @ 3
Mary, 90




Amy, 80



Mary, 90
John, 85



4



Example: Top-1 (partial replication)

ADD(Amy, 80) @ 2, ADD(John, 85) @ 3
Mary, 90
Amy, 80




Amy, 80
John, 85




Mary, 90
John, 85



4



Example: Top-1 (partial replication)


Mary, 90
Amy, 80




Amy, 80
John, 85




Mary, 90
John, 85



4



Example: Top-1 (partial replication)


Mary, 90
Amy, 80




Amy, 80
John, 85




Mary, 90
John, 85



4



Can we create a replication model where any single object
replica can answer all read operations without storing all the

data?

4



Example: Top-1 (non-uniform replication)







5



Example: Top-1 (non-uniform replication)

ADD(Mary, 90) @ 1
Mary, 90






5



Example: Top-1 (non-uniform replication)

ADD(Mary, 90) @ 1
Mary, 90




Mary, 90


5



Example: Top-1 (non-uniform replication)


Mary, 90




Mary, 90


5



Example: Top-1 (non-uniform replication)

ADD(John, 80) @ 1
Mary, 90
John, 80




Mary, 90


5



Example: Top-1 (non-uniform replication)


Mary, 90
John, 80




Mary, 90


5



Example: Top-1 (non-uniform replication)

ADD(John, 85) @ 1
Mary, 90
John, 85
John, 80




Mary, 90


5



Example: Top-1 (non-uniform replication)

ADD(John, 85) @ 1
Mary, 90
John, 85
�����John, 80




Mary, 90


5



Example: Top-1 (non-uniform replication)


Mary, 90
John, 85




Mary, 90


5



Example: Top-1 (non-uniform replication)

RMV(Mary) @ 1
�����Mary, 90
John, 85




Mary, 90


5



Example: Top-1 (non-uniform replication)

RMV(Mary) @ 1
�����Mary, 90
John, 85




�����Mary, 90


5



Example: Top-1 (non-uniform replication)


John, 85




John, 85


5



Road Map

• Non-uniform Replication
• Non-uniform CRDTs
• Evaluation
• Conclusion and future work

6



Non-uniform Replication

• A replication model where all replicas can answer all supported queries,
while maintaining only a subset of the data

• Replicas of the same object are not required to have equivalent states,
instead they are required to have observable equivalent states

• For two states to be observable equivalent a read operation must return the
same result for both states

7



Non-uniform Replication


Mary, 90
John, 85




Mary, 90


8



Non-uniform Replication

ADD(Amy, 100)
Mary, 90
John, 85




Amy, 100
Mary, 90



8



Eventual Consistency

A replicated system provides eventual consistency if in a quiescent state:

1. Each replica executed all operations
2. The state of any pair of replicas is equivalent

9



Non-uniform Eventual Consistency (NuEC)

A replicated system provides non-uniform eventual consistency if in a quiescent
state:

1. Every replica executed a set of operations that impact the final observable
state

2. The state of any pair of replicas is observable equivalent

10



Algorithm for providing NuEC (in an op-based CRDT model)

The goal is to divide operations, using only local
information, into four groups:
1. Operations that are core
2. Operations that are masked but can become

core
3. Operations that are forever masked
4. Operations that are masked but in the context

of the entire system are considered core



Paul, 80


11



Algorithm for providing NuEC (in an op-based CRDT model)

The goal is to divide operations, using only local
information, into four groups:
1. Operations that are core
2. Operations that are masked but can become

core
3. Operations that are forever masked
4. Operations that are masked but in the context

of the entire system are considered core

ADD(John, 85)

John, 85
Paul, 80



11



Algorithm for providing NuEC (in an op-based CRDT model)

The goal is to divide operations, using only local
information, into four groups:
1. Operations that are core
2. Operations that are masked but can become

core
3. Operations that are forever masked
4. Operations that are masked but in the context

of the entire system are considered core

ADD(Amy, 50)

John, 85
Paul, 80
Amy, 50



11



Algorithm for providing NuEC (in an op-based CRDT model)

The goal is to divide operations, using only local
information, into four groups:
1. Operations that are core
2. Operations that are masked but can become

core
3. Operations that are forever masked
4. Operations that are masked but in the context

of the entire system are considered core

ADD(Amy, 52)

John, 85
Paul, 80
Amy, 52
Amy, 50



11



Algorithm for providing NuEC (in an op-based CRDT model)

The goal is to divide operations, using only local
information, into four groups:
1. Operations that are core
2. Operations that are masked but can become

core
3. Operations that are forever masked
4. Operations that are masked but in the context

of the entire system are considered core



John, 85
Paul, 80
Amy, 52
����Amy, 50



11



Fault-tolerance

• Not propagating masked operations raises the issue of the durability of
operations

• Possible solution:
• Source replicas propagate masked operations to at least f other replicas

• Base algorithm would have to be updated to consider the case where the
source replicas of a masked operation fail

12



Road Map

• Non-uniform Replication
• Non-uniform CRDTs
• Evaluation
• Conclusion and future work

13



Top-K with removals

14



Top-K with removals

• Defined as a set of tuples, ⟨ id, score ⟩
• Supports two write operations

• ADD(id, score)
• RMV(id)

15



Top Sum

16



Top Sum

• A mapping of: id 7→ value
• Supports one write operation

• ADD(id, value): increments the local value of id by the given value

17



Top-1 Sum







18



Top-1 Sum

ADD(Echo, 100) @ 1
Echo 7→ 100






18



Top-1 Sum

ADD(Echo, 100) @ 1
Echo 7→ 100




Echo 7→ 100


18



Top-1 Sum


Echo 7→ 100




Echo 7→ 100


18



Top-1 Sum

ADD(Fire, 25) @ 1
Echo 7→ 100
Fire 7→ 25




Echo 7→ 100


18



Top-1 Sum

ADD(Fire, 25) @ 1
Echo 7→ 100
Fire 7→ 50




Echo 7→ 100


18



Top-1 Sum

ADD(Fire, 25) @ 1
Echo 7→ 100
Fire 7→ 50




Echo 7→ 100
Fire 7→ 50



18



Top-1 Sum


Echo 7→ 100
Fire 7→ 50




Echo 7→ 100
Fire 7→ 50



18



Top-1 Sum

ADD(Fire, 30) @ 1, ADD(Fire, 30) @ 2
Echo 7→ 100
Fire 7→ 80




Echo 7→ 100
Fire 7→ 80



18



Top-1 Sum

ADD(Fire, 30) @ 1, ADD(Fire, 30) @ 2
Fire 7→ 110
Echo 7→ 100




Fire 7→ 110
Echo 7→ 100



18



Road Map

• Non-uniform Replication
• Non-uniform CRDTs
• Evaluation
• Conclusion and future work

19



Evaluation: Questions

• What questions do we want to answer with this evaluation?
• Do our designs reduce...

• the amount of data transmitted?
• the replica sizes?

20



Evaluation: Setup

• Performed by simulation
• Evaluation setup uses 5 replicas per object
• Replicas synchronize every 100 operations
• We compare our NuCRDTs with state-of-the-art CRDT designs

21



State-of-the-art CRDT designs

• We compare our designs with the following state-of-the-art CRDT designs:
• Delta-based CRDTs, that maintain full object replicas efficiently by propagating
updates as deltas of the state

• Computational CRDTs (CCRDTs), that maintain non-uniform replicas using a
state-based approach

• For the evaluation to be fair both our NuCRDT designs and the CCRDT designs
were adjusted to support up to 2 replica faults

22



Top-K with removals: dissemination cost

 0

 50

 100

 150

 200

 250

 300

 350

 400

100k 200k 300k 400k 500k

T
ot

al
 M

es
sa

g
e 

Pa
yl

oa
d
 (

M
B
)

Number of Events

NuCRDT
CCRDT

Delta CRDT

Figure 1: Total message size, workload of 95% adds
23



Top-K with removals: storage cost

 0

 2

 4

 6

 8

 10

 12

 14

100k 200k 300k 400k 500k

A
ve

ra
g
e 

R
ep

lic
a 

S
iz

e 
(M

B
)

Number of Events

NuCRDT
CCRDT

Delta CRDT

Figure 2: Mean replica size, workload of 95% adds
24



Top-K with removals: dissemination cost

 0

 50

 100

 150

 200

 250

 300

100k 200k 300k 400k 500k

T
ot

al
 M

es
sa

g
e 

Pa
yl

oa
d
 (

M
B
)

Number of Events

NuCRDT
CCRDT

Delta CRDT

Figure 3: Total message size, workload of 99.95% adds
25



Top-K with removals: storage cost

 0

 2

 4

 6

 8

 10

 12

 14

100k 200k 300k 400k 500k

A
ve

ra
g
e 

R
ep

lic
a 

S
iz

e 
(M

B
)

Number of Events

NuCRDT
CCRDT

Delta CRDT

Figure 4: Mean replica size, workload of 99.95% adds
26



Top Sum: dissemination cost

 1

 10

 100

 1000

100k 200k 300k 400k 500k

T
ot

al
 M

es
sa

g
e 

Pa
yl

oa
d
 (

M
B
),

 l
og

1
0

Number of Events

NuCRDT
CCRDT

Delta CRDT

Figure 5: Total message size
27



Top Sum: storage cost

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

100k 200k 300k 400k 500k

A
ve

ra
g
e 

R
ep

lic
a 

S
iz

e(
M

B
)

Number of Events

NuCRDT
CCRDT

Delta CRDT

Figure 6: Mean replica size
28



Road Map

• Non-uniform Replication
• Non-uniform CRDTs
• Evaluation
• Conclusion and future work

29



Conclusion

• Introduced the non-uniform replication model and formalized its semantics
for an eventually consistent system

• Showed how the model can be applied to CRDTs
• Compared our NuCRDT designs with state-of-the-art CRDT alternatives via
simulation, showing the gains in network bandwidth and storage space

30



Future work

• Study the applicability of this replication model to stronger consistency
models, such as linearizability

• Design other data types that benefit from this model

31



Questions?

31


