Designing a Planetary-Scale IMAP Service with CRDTs

Tim Jungnickel, Lennart Oldenburg and Matthias Loibl

TU Berlin Complex and Distributed IT-Systems

December 19, 2017

Stateful Service

Data is stored beyond one request.

Stateless Service

Stateful Service

Data is stored beyond one request.

Stateless Service

Stateful Service

Data is stored beyond one request.

Stateless Service

Stateful Service

Data is stored beyond one request.

Stateless Service

Single-Leader Replication

Only the leader answers the write requests.

Single-Leader Replication

Only the leader answers the write requests.

Leaderless Replication

Requests are sent to multiple nodes.

Single-Leader Replication

Only the leader answers the write requests.

Leaderless Replication

Requests are sent to multiple nodes.

Multi-Leader Replication

All nodes answer write requests.

Towards a Stateful Logic-Layer

Towards a Stateful Logic-Layer

Internet Message Access Protocol

The standard protocol to retrieve e-mail messages from a mail server.

Example Mail Servers

- ► GMail: 1B users
- Deutsche Telekom: 26M users

Control Commands

- ► Folders:
 - CREATE, DELETE
- Messages:

APPEND, STORE, EXPUNGE

Internet Message Access Protocol

The standard protocol to retrieve e-mail messages from a mail server.

Example Mail Servers

- ▶ GMail: 1B users
- Deutsche Telekom: 26M users

Control Commands

- Folders: CREATE, DELETE
- Messages: APPEND, STORE, EXPUNGE

```
a1 LOGIN user password
   OK LOGIN completed
a1
a2 CRFATE tuberlin
a2 OK tuberlin created
a3 SELECT inbox
* 18 EXSISTS
 2 RECENT
a3 OK SELECT completed
a4 FXPUNGE
a4 OK EXPUNGE completed
a5 LOGOUT
* BYE terminating now
a5 OK LOGOUT completed.
```

Conflict-free Replicated Data Types

CRDT's offer convergence of replicas without synchronization.

System Model

- Asynchronous network of processes
- Processes can crash and recover
- Network can partition and recover

Requirements

- Causal order delivery
- Commutativity of concurrent updates

The IMAP CRDT

Specification: The IMAP CRDT (snippet)

- 1: payload map $u: \mathcal{N} \to \mathcal{P}(\mathtt{ID}) \times \mathcal{P}(\mathcal{M})$
- 2: initial $(\lambda x.(\emptyset, \emptyset))$
- 3: **update** *create* (foldername f)
- 4: atSource
- 5: let $\alpha = unique()$
- 6: downstream (f, α)
- 7: $u(f) \mapsto (u(f)_1 \cup \{\alpha\}, u(f)_2)$

The IMAP CRDT

Specification: The IMAP CRDT (snippet)

- 1: payload map $u: \mathcal{N} \to \mathcal{P}(\mathtt{ID}) \times \mathcal{P}(\mathcal{M})$
- 2: initial $(\lambda x.(\emptyset, \emptyset))$
- 3: **update** *create* (foldername f)
- 4: atSource
- 5: let $\alpha = unique()$
- 6: downstream (f, α)

7:
$$u(f) \mapsto (u(f)_1 \cup \{\alpha\}, u(f)_2)$$

- ► Specified for all *consistency critical* IMAP commands.
- Fully verified in Isabelle based on a CRDT Framework:
 - Asynchronous network, crash failures, etc.
 - Commutativity of concurrent operations.
 - Convergence of replicas.

Pluto

Research Prototype

- ► Free Software, written in go.
- Causal order delivery + IMAP CRDT

Pluto

Research Prototype

- ► Free Software, written in go.
- Causal order delivery + IMAP CRDT

IMAP Benchmark

- ► Write intensive workload generation.
- ► Customizable and reusable for other IMAP servers.

Pluto

Research Prototype

- ► Free Software, written in go.
- Causal order delivery + IMAP CRDT

IMAP Benchmark

- ► Write intensive workload generation.
- Customizable and reusable for other IMAP servers.

Cloud Deployment

- ► Kubernetes based deployment in the Google Cloud.
- ► Monitoring with Prometheus and Styx [PromCon 2017].

Experiment Setup

Replication Lag Diagrams

Multi-Datacenter Replication Lag

Multi-Datacenter Replication Lag

209.83 MB*s 97.92 MB*s

14.32 MB*s 5.83 MB*s

Conclusion

IMAP Server based on CRDTs

- We provide a verified IMAP-CRDT that guarantees convergence among replicas.
- ► We were able to reduce the replication lag.
- The response time needs improvement in order to compete with industry software.

Conclusion

IMAP Server based on CRDTs

- We provide a verified IMAP-CRDT that guarantees convergence among replicas.
- We were able to reduce the replication lag.
- The response time needs improvement in order to compete with industry software.

Takeaways

- Implementing multi-leader replication on the logic-layer is a challenging but manageable task.
- CRDTs offer the necessary tools to build software at planetary scale.

fin