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• CONGEST model 
• n nodes, connected by communication links 
• unique identifiers, synchronous communication 
• unlimited local computation 
• message size O(log n) bits/round 
• time measure: number of rounds
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• CONGEST model 
• n nodes, connected by communication links 
• unique identifiers, synchronous communication 
• unlimited local computation 
• message size O(log n) bits/round 
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• Upper bounds: broadcast CONGEST 
• Lower bounds: unicast CONGEST

Introduction: 
CONGEST model



• H-subgraph detection problem 
• given a fixed pattern graph H on k nodes 
• does the network G contain H as a subgraph? 

• triangle detection, cycle detection, clique 
detection, … 
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• Detection: 
• if node belongs to a copy of H, output one copy of H 

• Listing/enumeration: 
• all copies of H are a part of some node’s output 
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• H has constant size k 
• In LOCAL: O(1) for any H trivially 
• In CONGEST: trivial upper bound O(n2)
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• Upper bounds 
• triangle finding in Õ(n2/3) rounds [Izumi & Le Gall, PODC 2017] 

• triangle enumeration in Õ(n3/4) rounds [Izumi & Le Gall, PODC 2017] 
• 4-cycle finding in O(n1/2) rounds [Drucker, Kuhn, Ostmann, PODC 2014] 

• clique enumeration in O(n) rounds (trivial) 

• Lower bounds 
• k-cycles (k even) Ω(n2/k) rounds [Drucker, Kuhn, Ostmann, PODC 2014]   
• k-cycles (k odd, k ≥ 5) Ω(n) rounds [Drucker, Kuhn, Ostmann, PODC 2014] 
• triangle enumeration Ω(n1/3) rounds [Izumi & Le Gall, PODC 2017]
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Introduction: 
Prior work, DISC 2017
• Guy Even, Reut Levi, and Moti Medina.  

Faster and simpler distributed algorithms for testing and correcting graph properties in the 
CONGEST-model, 2017. arXiv:1705.04898 [cs.DC]. 


• Orr Fischer, Tzlil Gonen, and Rotem Oshman.  
Distributed property testing for subgraph-freeness revisited, 2017. arXiv:1705.04033 [cs.DS]. 


• Pierre Fraigniaud, Pedro Montealegre, Dennis Olivetti, Ivan Rapaport, and Ioan 
Todinca. 
Distributed subgraph detection, 2017. arXiv:1706.03996 [cs.DC]. 

Appearing together as Three notes on distributed 
property testing, DISC 2017. 

• tree detection in O(1) rounds
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• Upper bounds 
• k-trees in O(1) rounds* 
• k-cycles in O(n) rounds 
• k-pseudotrees (tree + 1 edge) in O(n) rounds 

• Lower bounds 
• k-cycles (k even) require Ω(n1/2/log n) rounds
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• Some tight results… 
• trees in O(1) rounds 
• odd cycles are Θ(n) 

• …and some not tight 
• gap for even cycles between O(n) and Ω(n1/2)

Results 1: 

Finding Trees and Cycles
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• does it help if the input graph G is sparse? 

• notion of sparseness: bounded degeneracy 
• input graph G with degeneracy d 
• degeneracy ≈ arboricity

Results 2: 

Enumeration in sparse graphs



• Upper bounds 
• k-cliques and 4-cycles in O(d + log n) rounds 
• 5-cycles in O(d2 + log n) rounds  

• Lower bounds 
• finding 4-cycles and 5-cycles requires Ω(d) rounds 
• bounded degeneracy does not help with 6-cycles 

• need Ω(n1/2) rounds on graphs with degeneracy 2

Results 2: 

Enumeration in sparse graphs
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Our Results: 
Finding Trees and 

Cycles
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O(1) O(n)



• Well-known algorithmic technique 
• used in centralised fixed-parameter algorithms for 

subgraph detection 
• running times of type 2O(k) poly(n) 
• compare with other FPT techniques: colour-coding, 

polynomial sieving,…

Technical tool: 

Representative families

• Pierre Fraigniaud, Pedro Montealegre, Dennis Olivetti, Ivan Rapaport, 
and Ioan Todinca. 
Distributed subgraph detection, 2017. arXiv:1706.03996 [cs.DC]. 



O(k2k)

explicit construction of all partial subtrees 
+ 

“filtering” with representative families 



O(k2k) O(k2kn)

· n =

O(k2k) O(k2kn)

· n =



Ω(n1/2/log n)



Ω(n1/2/log n)

very standard communication complexity reduction



Our Results: 
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sparse graphs
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O(d + log n)

O(d2 + log n)



• The following are equivalent: 
• graph G has degeneracy d 
• graph G has acyclic orientation with out-degree d
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• The following are equivalent: 
• graph G has degeneracy d 
• graph G has acyclic orientation with out-degree d 

• acyclic orientation with out-degree O(d) can be 
found in O(log n) rounds [Barenboim & Elkin 2010]

Preliminaries: 
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Basic idea: all nodes broadcast their outgoing edges 
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4-cycles: some node will see all edges 
(3 cases to consider)



Basic idea: all nodes broadcast their outgoing edges 
(O(d) rounds)

5-cycles: broadcast outgoing 2-paths 
(O(d2) rounds)



Ω(d/log n)

no degeneracy upper bound



Conclusions
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• General question: given arbitrary H, what is the 
complexity of detecting H? 
• general upper bound O(n)? 
• connection to tree-width: trees 1, cycles 2, …? 

• Special cases: 
• triangles: ??? 
• even cycles: gap between O(n) and Ω(n1/2)

Conclusions: 

General upper/lower bounds?



• Graphs requiring Ω(n2–ε) rounds for any ε>0 
• diameter 3 [Fischer, Gonen & Oshman 2017] 
• tree-width 2 [our work]

Conclusions: 

General upper/lower bounds?

Ω(n2–1/2) Ω(n2–1/3) Ω(n2–1/4) …



• Graphs requiring Ω(n2–ε) rounds for any ε>0 
• diameter 3 [Fischer, Gonen & Oshman 2017] 
• tree-width 2 [our work] 

• Corresponding upper bound? 
• lower bound Ω(n2/polylog n) does not seem possible 

with standard techniques 
• conjecture: for any H, some O(n2–ε) upper bound

Conclusions: 

General upper/lower bounds?



Thanks! Questions?


