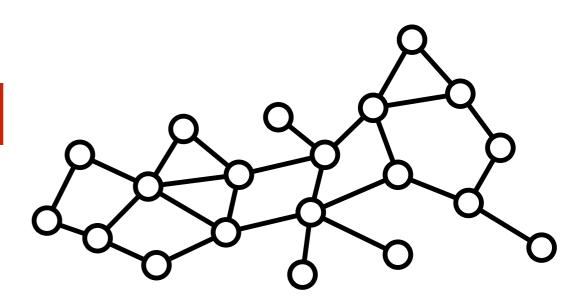
Deterministic subgraph detection in broadcast CONGEST

Janne H. Korhonen · Aalto University Joel Rybicki · University of Helsinki

1.

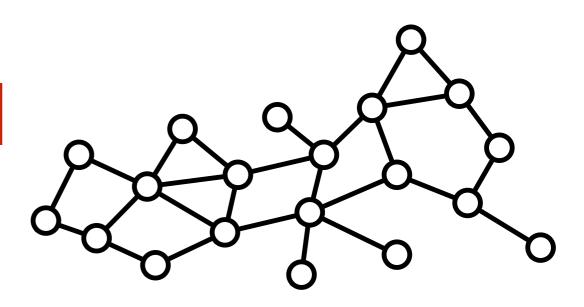
Introduction

Introduction: CONGEST model



- CONGEST model
 - n nodes, connected by communication links
 - unique identifiers, synchronous communication
 - unlimited local computation
 - message size O(log n) bits/round
 - time measure: number of rounds

Introduction: CONGEST model

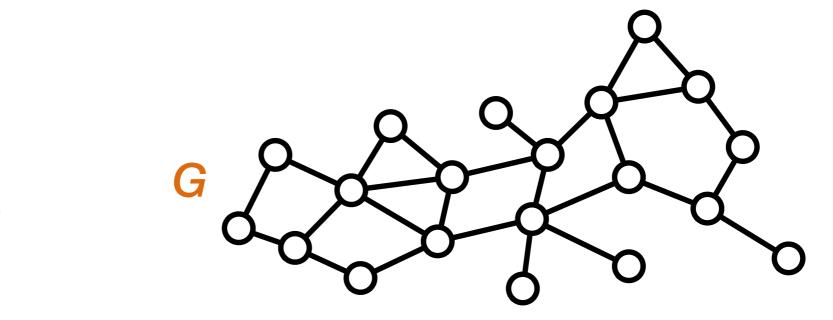


- CONGEST model
 - n nodes, connected by communication links
 - unique identifiers, synchronous communication
 - unlimited local computation
 - message size O(log n) bits/round
 - time measure: number of rounds
- Upper bounds: broadcast CONGEST
- Lower bounds: unicast CONGEST

Introduction:

Subgraph detection

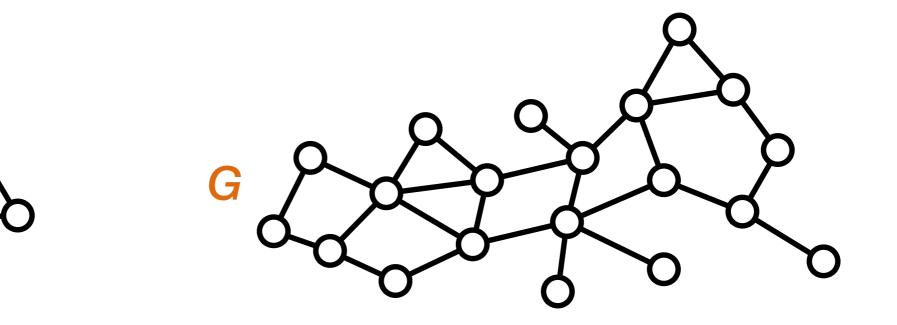
- H-subgraph detection problem
 - given a fixed pattern graph H on k nodes
 - does the network G contain H as a subgraph?
- triangle detection, cycle detection, clique detection, ...



Introduction: Subgraph detection

• Detection:

- if node belongs to a copy of *H*, output one copy of *H*
- Listing/enumeration:
 - all copies of H are a part of some node's output

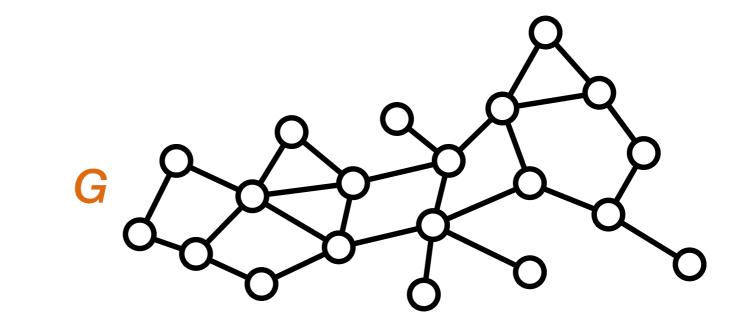


Introduction:

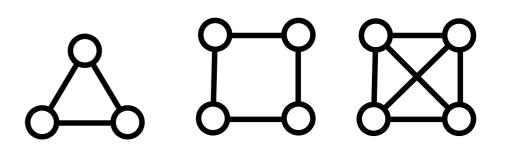
Subgraph detection

• H has constant size k

- In LOCAL: O(1) for any H trivially
- In CONGEST: trivial upper bound O(n²)



Introduction: Prior work

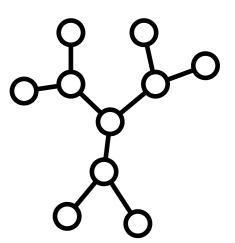


Upper bounds

- triangle finding in Õ(n^{2/3}) rounds [Izumi & Le Gall, PODC 2017]
- triangle enumeration in $\tilde{O}(n^{3/4})$ rounds [Izumi & Le Gall, PODC 2017]
- 4-cycle finding in O(n^{1/2}) rounds [Drucker, Kuhn, Ostmann, PODC 2014]
- clique enumeration in O(n) rounds (trivial)

Lower bounds

- k-cycles (k even) $\tilde{\Omega}(n^{2/k})$ rounds [Drucker, Kuhn, Ostmann, PODC 2014]
- k-cycles (k odd, $k \ge 5$) $\tilde{\Omega}(n)$ rounds [Drucker, Kuhn, Ostmann, PODC 2014]
- triangle enumeration $\tilde{\Omega}(n^{1/3})$ rounds [Izumi & Le Gall, PODC 2017]



Introduction: Prior work, DISC 2017

Guy Even, Reut Levi, and Moti Medina.

Faster and simpler distributed algorithms for testing and correcting graph properties in the CONGEST-model, 2017. arXiv:1705.04898 [cs.DC].

- Orr Fischer, Tzlil Gonen, and Rotem Oshman. Distributed property testing for subgraph-freeness revisited, 2017. arXiv:1705.04033 [cs.DS].
- Pierre Fraigniaud, Pedro Montealegre, Dennis Olivetti, Ivan Rapaport, and Ioan Todinca.

Distributed subgraph detection, 2017. arXiv:1706.03996 [cs.DC].

Appearing together as *Three notes on distributed property testing*, DISC 2017.

• tree detection in O(1) rounds

2.

Our Results: **Overview**

Results 1: Finding Trees and Cycles

Upper bounds

- k-trees in O(1) rounds*
- k-cycles in O(n) rounds
- k-pseudotrees (tree + 1 edge) in O(n) rounds

Lower bounds

• k-cycles (k even) require $\Omega(n^{1/2}/\log n)$ rounds

Results 1: Finding Trees and Cycles

Upper bounds

- k-trees in O(k2k) rounds*
- k-cycles in O(k2^kn) rounds
- k-pseudotrees (tree + 1 edge) in O(k2kn) rounds

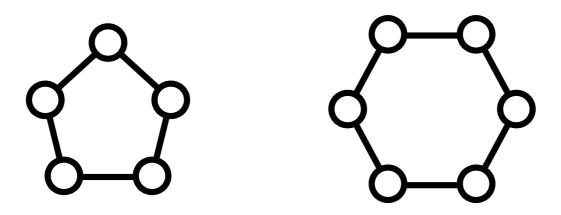
Lower bounds

• k-cycles (k even) require $\Omega(n^{1/2}/\log n)$ rounds

Results 1: Finding Trees and Cycles

Some tight results...

- trees in O(1) rounds
- odd cycles are $\tilde{\Theta}(n)$
- ...and some not tight
 - gap for even cycles between O(n) and $\tilde{\Omega}(n^{1/2})$



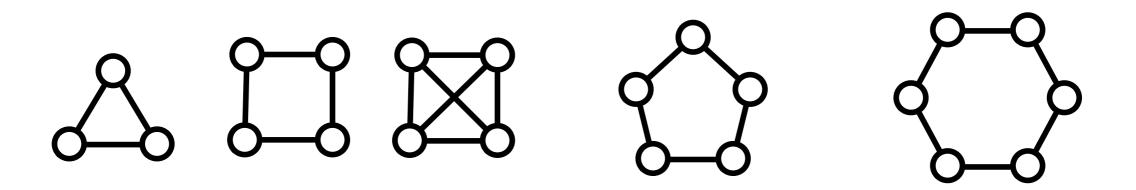
Results 2: Enumeration in sparse graphs

- does it help if the input graph G is sparse?
- notion of sparseness: bounded degeneracy
 - input graph G with degeneracy d
 - degeneracy \approx arboricity

Results 2: Enumeration in sparse graphs

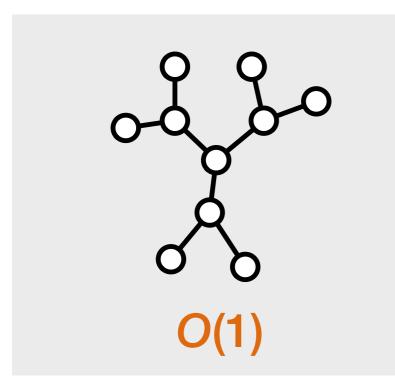
Upper bounds

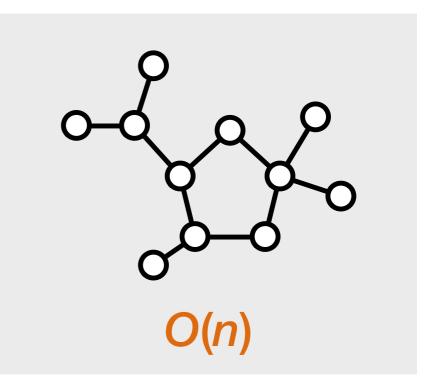
- k-cliques and 4-cycles in $O(d + \log n)$ rounds
- 5-cycles in O(d² + log n) rounds
- Lower bounds
 - finding 4-cycles and 5-cycles requires $\tilde{\Omega}(d)$ rounds
 - bounded degeneracy does not help with 6-cycles
 - need $\tilde{\Omega}(n^{1/2})$ rounds on graphs with degeneracy 2



3.

Our Results: Finding Trees and Cycles





Technical tool:

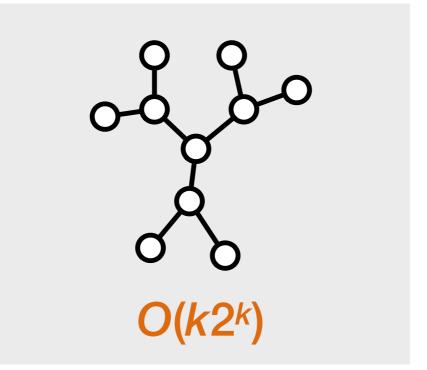
Representative families

Well-known algorithmic technique

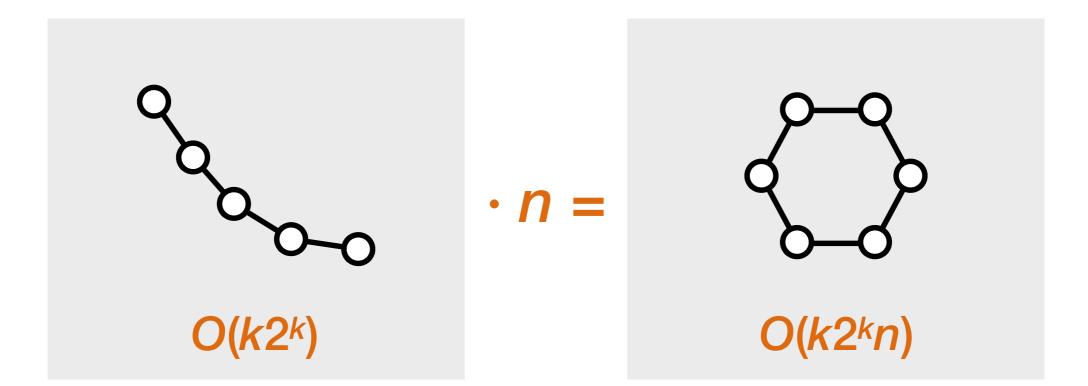
- used in centralised *fixed-parameter* algorithms for subgraph detection
- running times of type 2^{O(k)} poly(n)
- compare with other FPT techniques: colour-coding, polynomial sieving,...

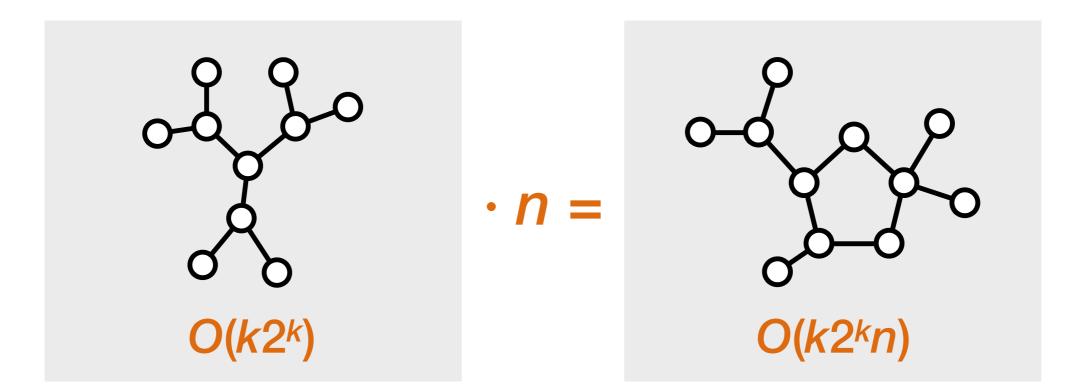
 Pierre Fraigniaud, Pedro Montealegre, Dennis Olivetti, Ivan Rapaport, and Ioan Todinca.

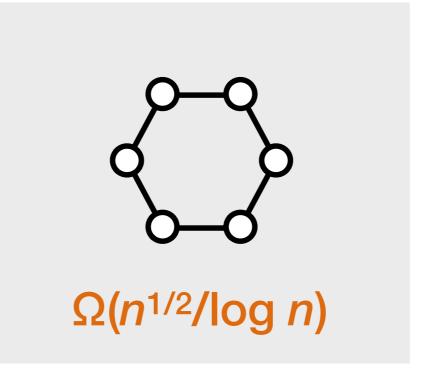
Distributed subgraph detection, 2017. arXiv:1706.03996 [cs.DC].

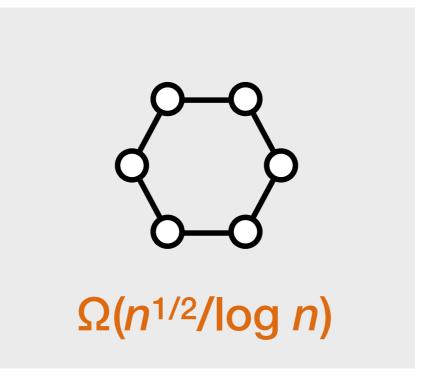


explicit construction of all partial subtrees + "filtering" with representative families





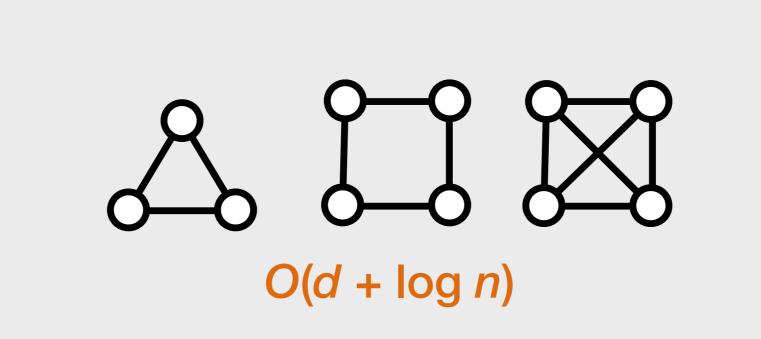


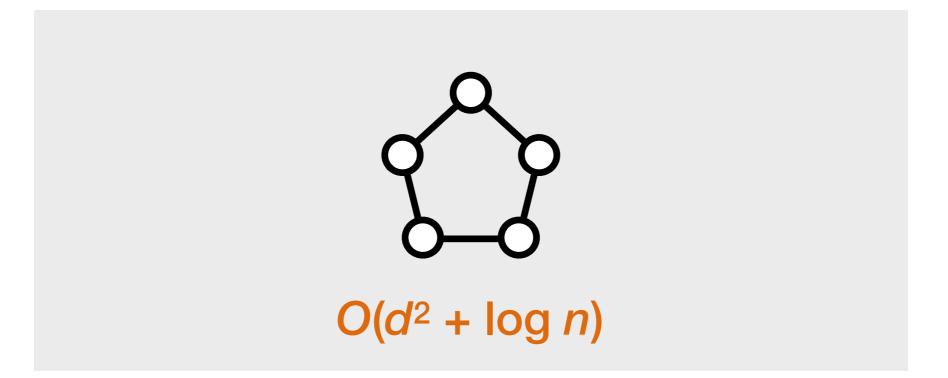


very standard communication complexity reduction

Our Results: Enumeration in sparse graphs

4.

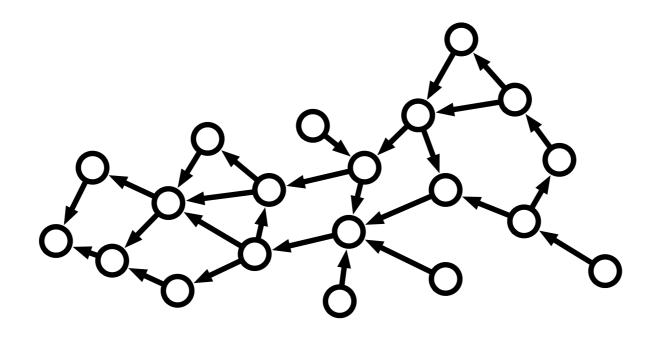




Preliminaries:

• The following are equivalent:

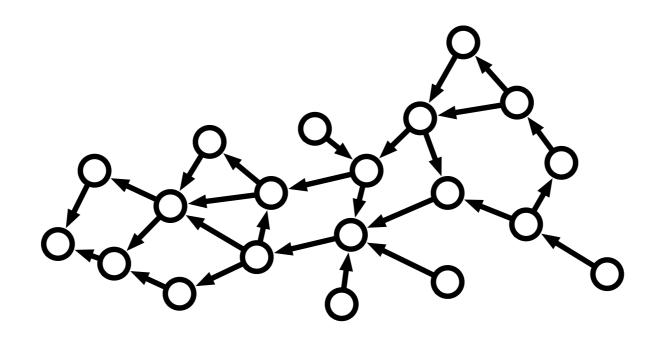
- graph G has degeneracy d
- graph G has acyclic orientation with out-degree d

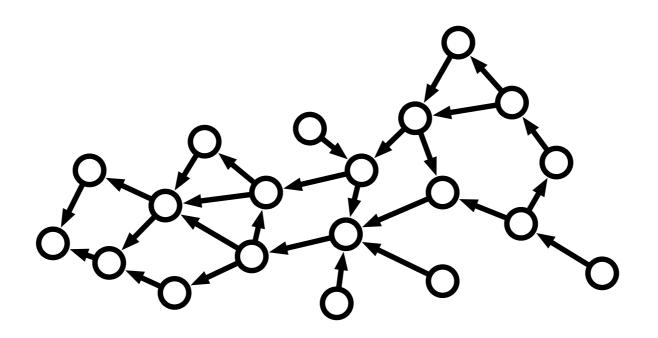


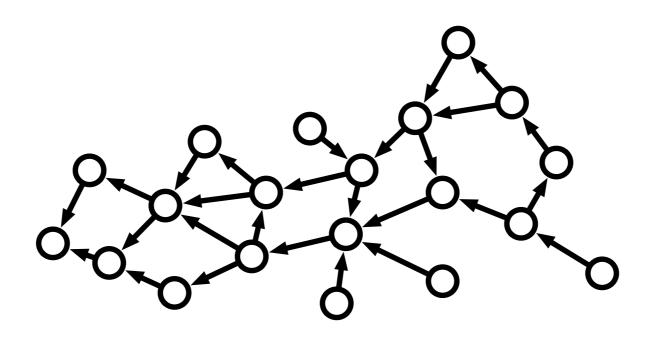
Preliminaries:

• The following are equivalent:

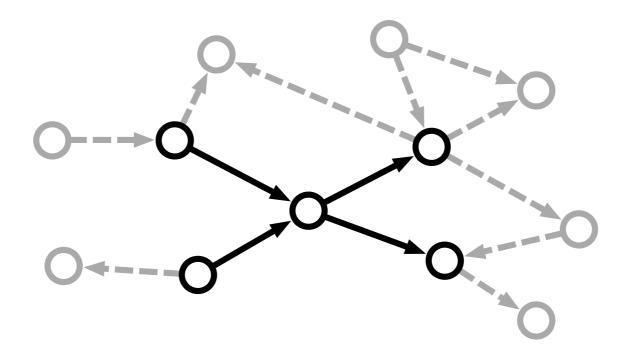
- graph G has degeneracy d
- graph G has acyclic orientation with out-degree d
- acyclic orientation with out-degree O(d) can be found in O(log n) rounds [Barenboim & Elkin 2010]

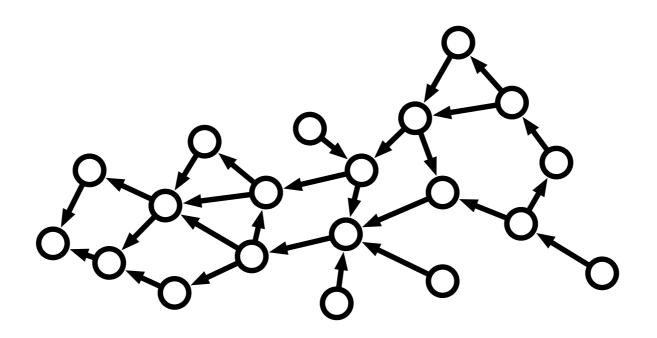




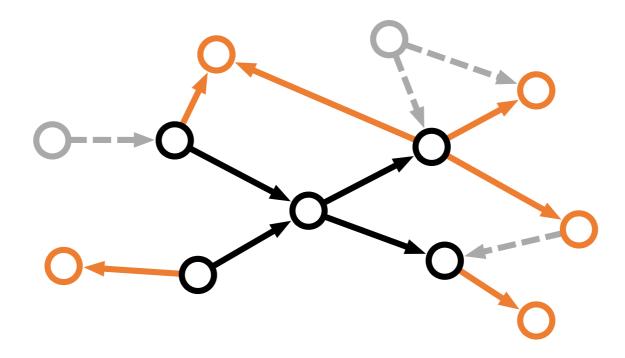


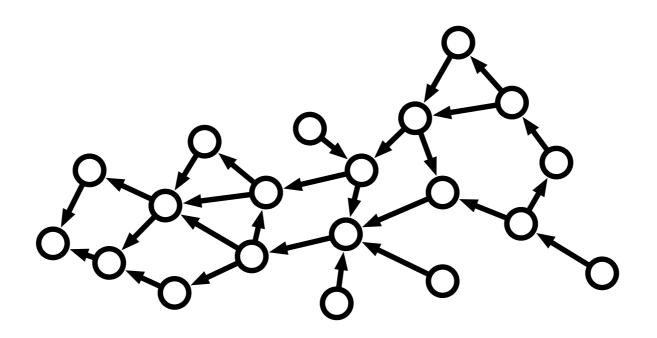
Basic idea: all nodes broadcast their outgoing edges (O(d) rounds)



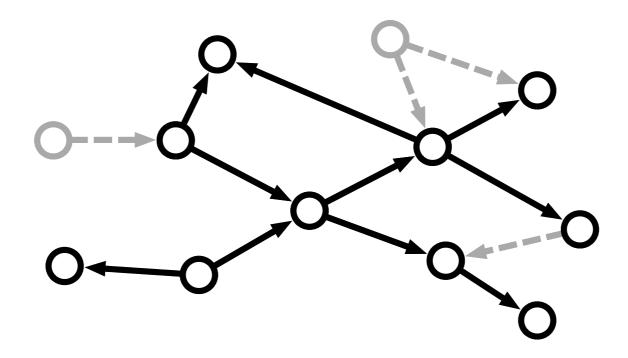


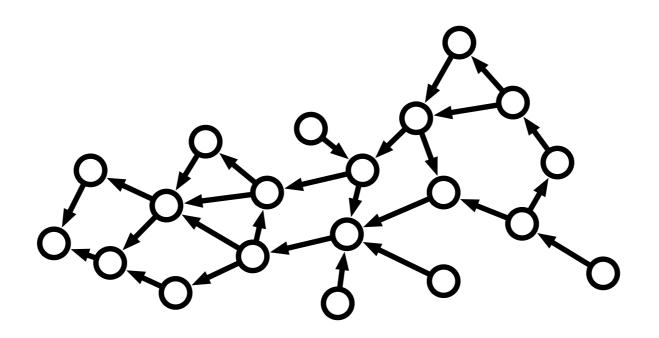
Basic idea: all nodes broadcast their outgoing edges (O(d) rounds)

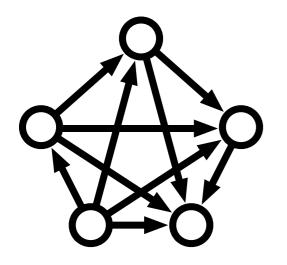




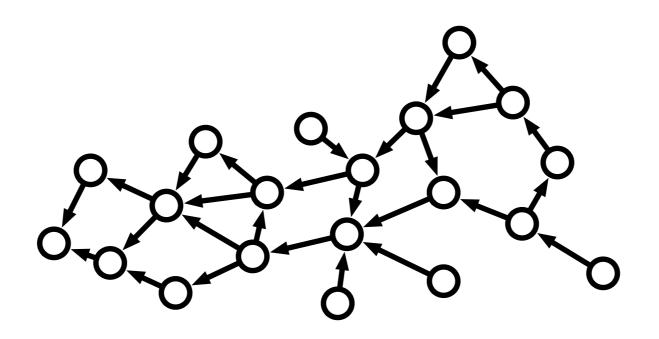
Basic idea: all nodes broadcast their outgoing edges (O(d) rounds)

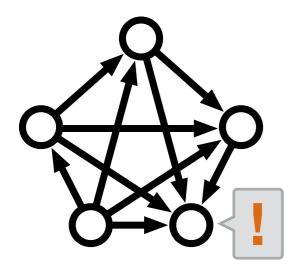




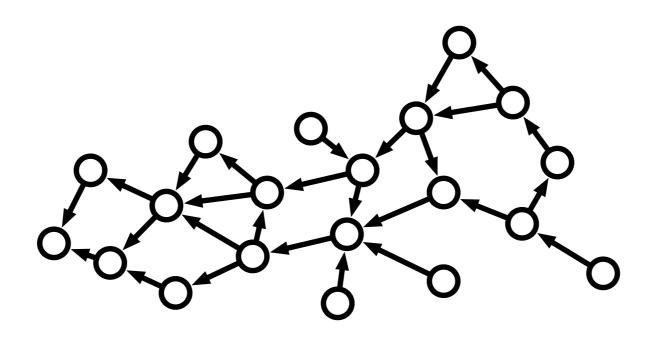


cliques: the sink will see all edges



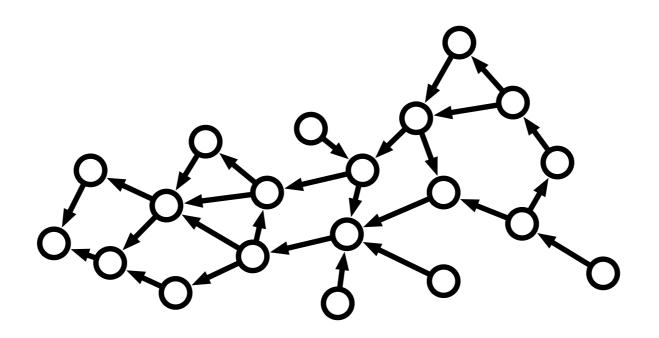


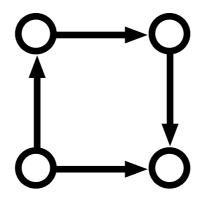
cliques: the sink will see all edges

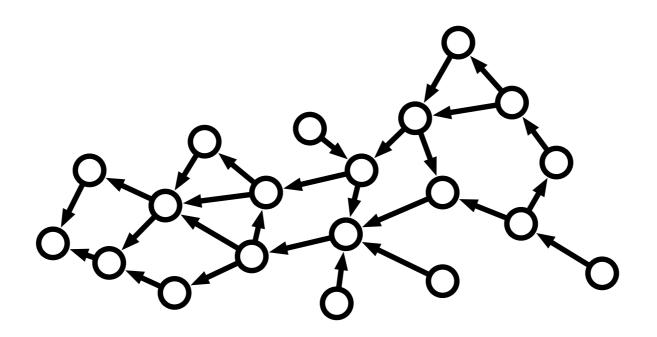


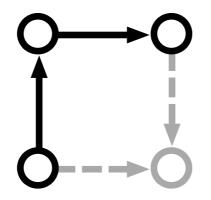


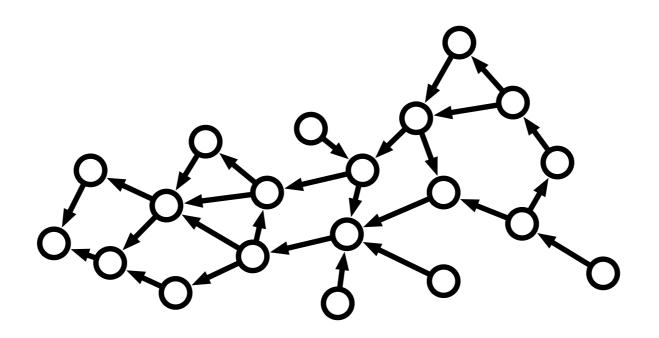
4-cycles: *some* node will see all edges (3 cases to consider)

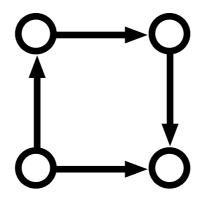


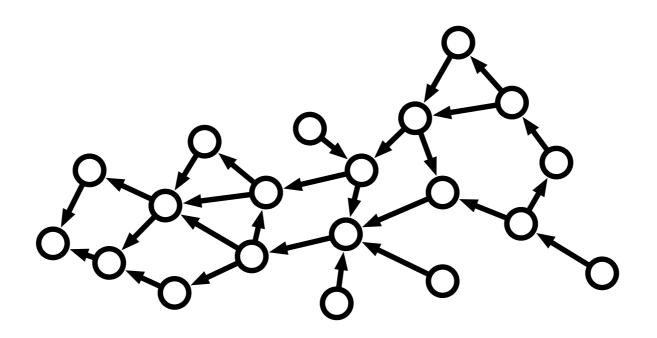


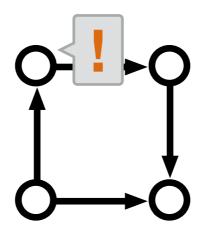


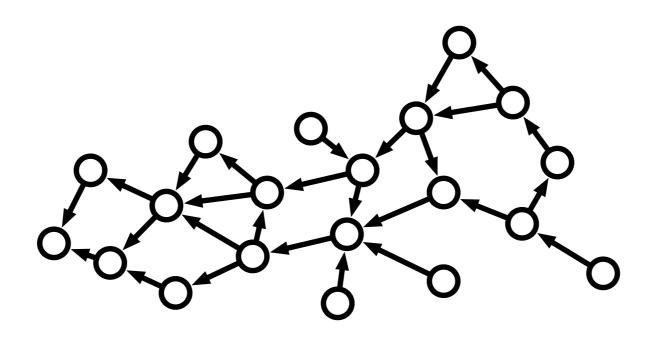






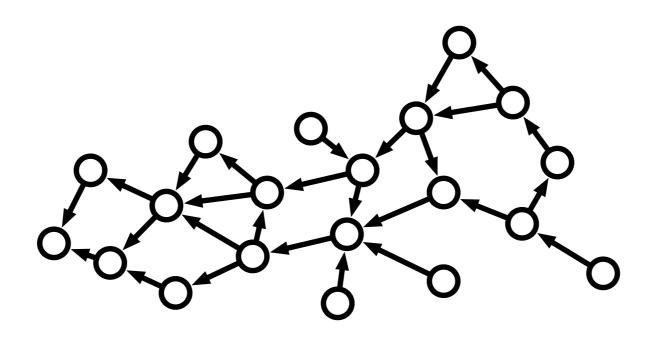


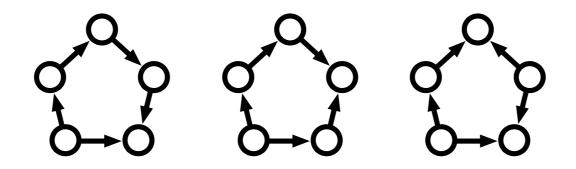




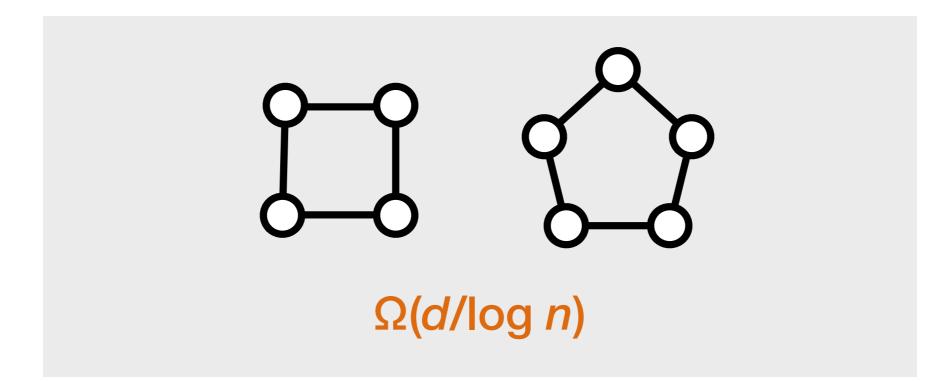


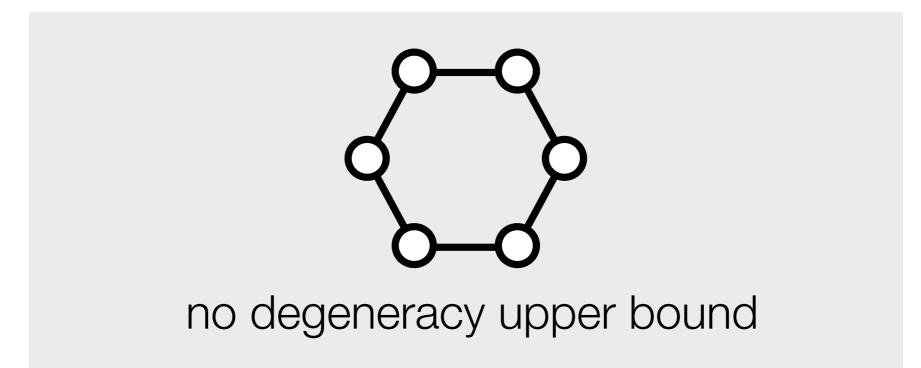
4-cycles: *some* node will see all edges (3 cases to consider)





5-cycles: broadcast outgoing 2-paths (O(d²) rounds)





5.

Conclusions

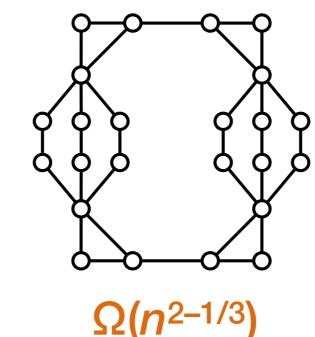
Conclusions: General upper/lower bounds?

- General question: given arbitrary *H*, what is the complexity of detecting *H*?
 - general upper bound O(n)?
 - connection to tree-width: trees 1, cycles 2, ...?
- Special cases:
 - triangles: ???
 - even cycles: gap between O(n) and Ω(n^{1/2})

Conclusions: General upper/lower bounds?

- Graphs requiring $\Omega(n^{2-\varepsilon})$ rounds for any $\varepsilon > 0$
 - diameter 3 [Fischer, Gonen & Oshman 2017]
 - tree-width 2 [our work]

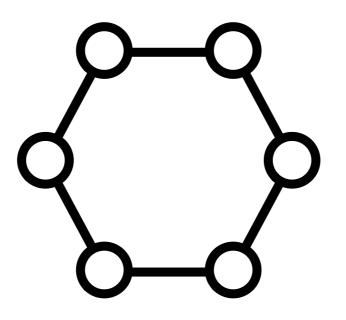
Ω(n^{2-1/2})





Conclusions: General upper/lower bounds?

- Graphs requiring $\Omega(n^{2-\varepsilon})$ rounds for any $\varepsilon > 0$
 - diameter 3 [Fischer, Gonen & Oshman 2017]
 - tree-width 2 [our work]
- Corresponding upper bound?
 - lower bound Ω(n²/polylog n) does not seem possible with standard techniques
 - conjecture: for any H, some $O(n^{2-\varepsilon})$ upper bound



Thanks! Questions?