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Introduction



INntroduction:

CONGEST model

e CONGEST model

* N nodes, connected by communication links

e Uunique identifiers, synchronous communication
* unlimited local computation

* message size O(log n) bits/round

e time measure: number of rounds



INntroduction:

CONGEST model

e CONGEST model

* N nodes, connected by communication links

e Uunique identifiers, synchronous communication
* unlimited local computation

* message size O(log n) bits/round

e time measure: number of rounds

 Upper bounds: broadcast CONGEST
* Lower bounds: unicast CONGEST




INntroduction:

Subgraph detection

* H-subgraph detection problem
e given a fixed pattern graph H on k nodes
» does the network G contain H as a subgraph”?

e triangle detection, cycle detection, clique
detection, ...
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INntroduction:

Subgraph detection

* Detection:
* if node belongs to a copy of H, output one copy of H

* Listing/enumeration:
 all copies of H are a part of some node’s output
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INntroduction:

Subgraph detection

* 4 has constant size k
e In LOCAL: O(1) for any H trivially
e [N CONGEST: trivial upper bound O(n2)
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INntroduction:

Prior work AN I:i E

* Upper bounds
e triangle finding in O(N%3) rounds jizumi & Le Gal, PODC 2017]
» triangle enumeration in O(n%4) rounds fzumi & Le Gal, PODC 2017]
° 4-CyC e flﬂdlﬂg IN O(n1/2) rOUNAS [Drucker, Kuhn, Ostrann, PODC 2014]
 cligue enumeration in O(n) rounds (trivial)

* Lower bounds
' k‘CyC|eS (k even) Q(nZ/k) rounds [Drucker, Kuhn, Ostmann, PODC 2014]
° k'CyC|eS (k odd, k = 5) Q(n) rOUNAS [Drucker, Kuhn, Ostmann, PODC 2014]
» triangle enumeration Q(n/3) rouNds fizumi & Le Gall, PODC 2017]



INntroduction:

Prior work, DISC 2017

« Guy Even, Reut Levi, and Moti Medina.
Faster and simpler distributed algorithms for testing and correcting graph properties in the
CONGEST-model, 2017. arXiv:1705.04898 [cs.DC].

- Orr Fischer, Tzlil Gonen, and Rotem Oshman.
Distributed property testing for subgraph-freeness revisited, 2017. arXiv:1705.04033 [cs.DS].

- Pierre Fraigniaud, Pedro Montealegre, Dennis Olivetti, Ivan Rapaport, and loan
Todinca.
Distributed subgraph detection, 2017. arXiv:1706.03996 [cs.DC].

Appearing together as Three notes on distributed
property testing, DISC 2017.

e tree detection in O(1) rounds



2.

Our Results:
Overview




Results 1;

Finding Trees and Cycles

* Upper bounds
e k-trees in O(1) rounds”
e k-cycles in O(n) rounds
* k-pseudotrees (tree + 1 edge) in O(n) rounds

* Lower bounds
» k-cycles (k even) require Q2(n'/2/log n) rounds



Results 1:

Finding Trees and Cycles

* Upper bounds
e k-trees in O(k2%) rounds™
e k-cycles in O(k2kn) rounds
* k-pseudotrees (tree + 1 edge) in O(k2%n) rounds

* Lower bounds
» k-cycles (k even) require Q2(n'/2/log n) rounds



Results 1;

Finding Trees and Cycles

* Some tight results...
e trees in O(1) rounds
» 0odd cycles are O(n)

e ...and some not tight )
* gap for even cycles between O(n) and Q2(n1/2)
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Results 2:

Enumeration In sparse graphs

» does it help if the input graph G is sparse?

* notion of sparseness: bounded degeneracy
* input graph G with degeneracy d
* degeneracy = arboricity



Results 2:

Enumeration In sparse graphs

 Upper bounds
* k-cliques and 4-cycles in O(d + log n) rounds
* 5-cycles in O(d? + log n) rounds

 Lower bounds
» finding 4-cycles and 5-cycles requires Q(d) rounds
* bounded degeneracy does not help with 6-cycles
» need Q(n'/2) rounds on graphs with degeneracy 2

AR > {5



3.

Our Results:
Finding Trees and
Cycles






Technical tool:

Representative families

* Well-known algorithmic technique
e used in centralised fixed-parameter algorithms for
subgraph detection
* running times of type 29k poly(n)
e compare with other FPT techniques: colour-coding,
polynomial sieving,...

- Pierre Fraigniaud, Pedro Montealegre, Dennis Olivetti, Ivan Rapaport,
and loan Todinca.
Distributed subgraph detection, 2017. arXiv:1706.03996 [cs.DC].



O(k2k)

explicit construction of all partial subtrees
_|_
“filtering” with representative tfamilies
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QQ(n1/2/log n)
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QQ(n1/2/log n)

very standard communication complexity reduction



4.

Our Results;
Enumeration in
sparse graphs
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O(d + log n)

O(d? + log n)



Preliminaries:

Degeneracy

* The following are equivalent:
e graph G has degeneracy d
* graph G has acyclic orientation with out-degree d
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Preliminaries:

Degeneracy

* The following are equivalent:
e graph G has degeneracy d
* graph G has acyclic orientation with out-degree d

e acyclic orientation with out-degree O(d) can be
found in O(log n) rounds [Barenboim & Elkin 2010]



Basic idea: all nodes broadcast their outgoing edges
(O(d) rounds)
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Basic idea: all nodes broadcast their outgoing edges
( rounds)
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Basic idea: all nodes broadcast their outgoing edges
( rounds)

C@P cliques: the sink will see all edges
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Basic idea: all nodes broadcast their outgoing edges
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C@P cliques: the sink will see all edges
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Basic idea: all nodes broadcast their outgoing edges
( rounds)

NPNEE

4-cycles: some node will see all edges
(3 cases to consider)
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Basic idea: all nodes broadcast their outgoing edges
( rounds)
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Basic idea: all nodes broadcast their outgoing edges
(O(d) rounds)
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Basic idea: all nodes broadcast their outgoing edges
( rounds)

NPNEE

4-cycles: some node will see all edges
(3 cases to consider)



Basic idea: all nodes broadcast their outgoing edges
(O(d) rounds)

o O\? o o O‘?
-8 &4 &3
5-cycles: broadcast outgoing 2-paths
(O(d?) rounds)
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No degeneracy upper bound



D.

Conclusions




Conclusions:

General upper/lower bounds?

* General question: given arbitrary H, what is the

complexity of detecting H*?
* general upper bound O(n)?
e connection to tree-width: trees 1, cycles 2, ...7?

* Special cases:
 triangles: 777
» even cycles: gap between O(n) and Q(n'/2)



Conclusions:

General upper/lower bounds?

* Graphs requiring ¢2(n2-¢) rounds for any £>0
e diameter 3 [Fischer, Gonen & Oshman 2017]
e tree-width 2 [our work]

Q(n 2-1 /2) Q(n 2-1 /3) Q(n 2-1 /4)



Conclusions:

General upper/lower bounds?

* Graphs requiring Q2(n2-¢) rounds for any £>0
e diameter 3 [Fischer, Gonen & Oshman 2017]
e tree-width 2 [our work]

* Corresponding upper bound?
* lower bound Q2(n2/polylog n) does not seem possible
with standard technigues
e conjecture: for any H, some O(n2-¢) upper bound
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Thanks! Questions?



