
NVMOVE

Fast Detection of Stable and Count Predicates in
Parallel Computations

Himanshu Chauhan and Vijay K.
Garg

University of Texas at Austin

2

Context: Verifying Parallel or Distributed
Programs

• Correct parallel programs
> not only difficult to implement
> but also difficult to debug/

verify

3

Verifying Programs: Techniques

1. Testing
 run implemented program once and observe
output

2. Model Checking
 check all possible states of the state machine
model of the program

4

Verifying Parallel Programs

Resources

Efficacy Model
checking

Testing

Predicate Detection
or Predictive Analysis

5

Predicate Detection

• Run program once
1. model execution as partial order
2. verify model for correctness

One partial order

Many total orders

6

Analyzing Computations

Example Questions:
Is it possible that two red messages
can be delivered before the first yellow event?

Is it possible that process P1 (master) finishes executing three
events before second event on P3 happened?

Possible to map and analyze useful applications:
• Paxos implementation [distributed]
• Concurrent modification/data-race/critical section violation
[shared memory]

P2

P1

P3

NVMOVEPredicate Detection: Background

8

Computation: Trace of a Parallel Program

P2

P1

 E: set of events
 happened-before relation

 process order + causal dependency

9

Consistent Cut

Snapshot of computation that is consistent
with the happened-before order.

If a cut G includes event e then it must
include

every event that happened before e.

X

10

Verifying Computation for Correctness

• Check all consistent cuts of the
computation against a predicate B

• NP-complete [Chase and Garg 98]

11
{}

Set of all Consistent Cuts

The size of this lattice is
exponential in n (number of processes).

The set of consistent cuts forms a
distributive lattice.

12

Enumerating all consistent cuts satisfying B

• Brute force 1:
 for all subsets G of E do
 if consistent(G) and B(G): enumerate G
 Generates all cuts
• BFS: [Cooper Marzullo 92]
 current: list of the global states initially contains initial state;
 repeat
 for all G in current: if B(G) then enumerate G
 last := current;
 current = global states reached from last in one step;
 until (current is empty)
 Other Algorithms: DFS, Lex, QuickLex..
 Generate all consistent cuts

13

Enumerating all consistent cuts satisfying B

• Need to enumerate those and only those
consistent cuts that satisfy B

• The time to compute a consistent cut
should be polynomial in the number of
events

• NP-completeness for general B implies we
need to exploit the structure of the
predicate

14

Regular Predicates

• SB : set of consistent cuts satisfying B

• B is regular if SB is a sublattice of L.
 (e.g. all processes are red and all channels
are empty)
• slice: a computation that generates exactly

SB [Garg and Mittal 01]

• Enumerate all consistent cuts of slice
What if B is not regular?

NVMOVE
Enumerating Stable and Count

Predicate Detectes

16

Stable Predicate

Predicate that once becomes true in the
computation stays true.

[Chandy and Lamport 85]

Examples: “Every process is in round > k”,
“at least k events have been executed”,

 “Process Pi has sent k messages”.

17

Consistent Cuts satisfying Stable Predicate

{}

18

Count Predicates
Predicate that take the form:

“exactly k c-colored events have been
executed.

Examples:
“exactly 3 blue events have been executed”

Only 8 such cuts

Total # of consistent cuts = 64

P1

P2

P3

19

Uniflow Chain Partition

• Arrangement of computation
dependencies (happened-before edges)
across chains go only down to up.

20

Uniflow Chain Partition

• Arrangement of computation
dependencies (happened-before edges)
flow either left to right, or down to up.

XX

21

Lemma: Every computation has a uniflow
partition.

Proof: Topological sort.

Uniflow Chain Partition

22

Optimal Uniflow Chain Partition

n

nu is polynomial in input size: nu ⩽ E; where E is # of events.

nu = 4 nu = 3

Finding the optimal uniflow chain partition is
NP-Hard (jump number of a poset)

23

Cut formed with bottom r events

r =11

P1

P2

P3

P4

Lemma: Any cut formed with bottom
r (1 ⩽ r ⩽ |E|) events of uniflow partition

is consistent.

24

Enumerating Cuts satisfying
Counting or Stable Predicates

Satisfy Stable Predicate B Satisfy Counting Predicate B

All known enumeration algorithms will
traverse the full lattice in the worst case.

Our algorithms only enumerate the cuts of the
lattice that satisfy the predicate.

25

• Predicate Detection

• Uniflow Chain Partition

• Stable and Counting Predicates

> Enumerating cuts: Stable Predicates

• Enumerating cuts: Counting
Predicates

26

Enumerating Stable Predicates using
Uniflow Partition

 B = “3 or more blue events have been
executed”

Step 1: GB = FindSmallestCut(B, {})
//smallest cut that satisfies B and is bigger than {}.

P1

P2

P3 0
3
3

27

Enumerating Stable Predicates using
Uniflow Partition

 B = “3 or more blue events have been
executed”

Step 2: GB = FindSmallestCut(B, GB)
//smallest cut that satisfies B and is bigger than GB.

P1

P2

P3 0
3
4

28

Enumerating Stable Predicates using
Uniflow Partition

 B = “3 or more blue events have been executed”

GB = FindSmallestCut(B, {})
while(true):
 enumerate(GB)
 GB = FindSmallestCut(B, GB)
 if not expanded: break

P1

P2

P3 0
3
4

1
3
4

2
0
3

1
3
3

…
so on

29

• Predicate Detection

• Uniflow Chain Partition

• Stable and Counting Predicates

• Enumerating cuts: Stable Predicates

> Enumerating cuts: Counting
Predicates

30

Enumerating Counting Predicates using
Uniflow Partition

 B = “exactly 3 blue events have been
executed”

Step 1: G = FindSmallestCut(B)

P1

P2

P3

31

Enumerating Counting Predicates using
Uniflow Partition

 B = “exactly 3 blue events have been
executed”

Step 2: EnumerateSameView(G,B)

P1

P2

P3

32

Enumerating Counting Predicates using
Uniflow Partition

 B = “exactly 3 blue events have been
executed”

Step 3: G = Successor(G,B)

P1

P2

P3

33

Enumerating Counting Predicates using
Uniflow Partition

G = Successor(G,B)
EnumerateSameView(G,B)

G = FindSmallestCut(B)
while(G != null)

34

H. Chauhan and V. K. Garg 0:13

Algorithm Space Required

BFS [?] O(mn≠1
n)

DFS [?] O(|E|)
Lex [?] O(n)
QuickLex [?] O(n)
This paper* O((nu + |E|) · n)

Table 1 Space complexities of algorithms for detecting a stable or count predicate in the lattice
of consistent cuts; here m = |E|

n .

O(nu · n
2

· log m) time, where m = max1ÆjÆnu |µj |, in the worst case. Hence, getting a con-
sistent cut result from GetMinCut in the representation corresponding to original chain
partition takes O((nu · n · log m + log |E|) · n) time in the worst case.

Based on this, we can state that for a stable predicate B enumerating all consistent cuts
of P = (E, æ) that satisfy B takes O((nu · n · log m + log |E|) · n) time per cut.

Let us now analyze the EnumSameViewCuts routine. Given a cut G, the routine adds
events not already present in G to form bigger cuts, and then checks if the cut satisfies the
predicate B. There are at |E ≠ G| events that are not present in G. Hence, in the worst
case the two for loops at lines 4 and 6 perform O(|E ≠ G|) iterations in combination. Each
time we form a bigger cut by adding an event, we check if the view of the cuts remains the
same (at line 8). Finding view(H) requires O(n) time. Thus, EnumSameViewCuts takes
O(n · |E ≠ G|) in the worst case.

We now analyze the optimized version of GetSuccessor routine. Recall that with the
projection based optimization, we first call the ComputeProjections routine that takes
O(n · nu) time. We need O(n · nu) space to store the computed projections. We then iterate
over nu chains, and perform O(n) work in finding viewK and then O(n) work in taking
the component-wise maximum of proj[i ≠ 1] and the vector clock of event being included.
Thus, in the worst case we perform O(n · nu) work before returning a result. Note that, we
may call GetMinCut routine at the end to return the correct result. As per our earlier
analysis, that requires additional O((nu · n · log m + log |E|) · n) time. Hence, in the worst
case GetSuccessor takes O((nu · n · log m + log |E|) · n) time and requires O(n · nu) space.

In Table 1, we compare the worst-case space complexities of our optimized algorithm
against those of detecting the predicate using the BFS, DFS, and Lex traversal algorithms.
Theorem: Let SB œ C(E) denote the set of consistent cuts that satisfy the stable or
counting predicate B. Then, enumerating all consistent cuts in SB takes O(f · |SB |) time
using the algorithms given in this paper; where f is a polynomial function of |E| (the number
of events) and n (the number of processes).

In comparison, enumerating all the cuts of SB using the existing algorithms such as BFS,
DFS, Lex (or QuickLex) may take O(|C(E)|) time in the worst case. Note that the |C(E)|
can be exponentially bigger than |SB |.

Table 2 compares the worst-case time complexities of these algorithms to enumerate all
consistent cuts in SB when B is stable.

Let SB œ C(E) denote the set of consistent cuts that satisfy the stable or count predicate
B for the computation P = (E, æ). Then, based on our analysis we have the following
result:

I Theorem 2. Enumerating all consistent cuts in SB takes O(f · |SB |) time using the algo-
rithms given in this paper; where f is a polynomial function of |E| and n.

OPODIS 2017

H. Chauhan and V. K. Garg 0:13

Algorithm Space Required

BFS [?] O(mn≠1
n)

DFS [?] O(|E|)
Lex [?] O(n)
QuickLex [?] O(n)
This paper* O((nu + |E|) · n)

Table 1 Space complexities of algorithms for detecting a stable or count predicate in the lattice
of consistent cuts; here m = |E|

n .

O(nu · n
2

· log m) time, where m = max1ÆjÆnu |µj |, in the worst case. Hence, getting a con-
sistent cut result from GetMinCut in the representation corresponding to original chain
partition takes O((nu · n · log m + log |E|) · n) time in the worst case.

Based on this, we can state that for a stable predicate B enumerating all consistent cuts
of P = (E, æ) that satisfy B takes O((nu · n · log m + log |E|) · n) time per cut.

Let us now analyze the EnumSameViewCuts routine. Given a cut G, the routine adds
events not already present in G to form bigger cuts, and then checks if the cut satisfies the
predicate B. There are at |E ≠ G| events that are not present in G. Hence, in the worst
case the two for loops at lines 4 and 6 perform O(|E ≠ G|) iterations in combination. Each
time we form a bigger cut by adding an event, we check if the view of the cuts remains the
same (at line 8). Finding view(H) requires O(n) time. Thus, EnumSameViewCuts takes
O(n · |E ≠ G|) in the worst case.

We now analyze the optimized version of GetSuccessor routine. Recall that with the
projection based optimization, we first call the ComputeProjections routine that takes
O(n · nu) time. We need O(n · nu) space to store the computed projections. We then iterate
over nu chains, and perform O(n) work in finding viewK and then O(n) work in taking
the component-wise maximum of proj[i ≠ 1] and the vector clock of event being included.
Thus, in the worst case we perform O(n · nu) work before returning a result. Note that, we
may call GetMinCut routine at the end to return the correct result. As per our earlier
analysis, that requires additional O((nu · n · log m + log |E|) · n) time. Hence, in the worst
case GetSuccessor takes O((nu · n · log m + log |E|) · n) time and requires O(n · nu) space.

In Table 1, we compare the worst-case space complexities of our optimized algorithm
against those of detecting the predicate using the BFS, DFS, and Lex traversal algorithms.
Theorem: Let SB œ C(E) denote the set of consistent cuts that satisfy the stable or
counting predicate B. Then, enumerating all consistent cuts in SB takes O(f · |SB |) time
using the algorithms given in this paper; where f is a polynomial function of |E| (the number
of events) and n (the number of processes).

In comparison, enumerating all the cuts of SB using the existing algorithms such as BFS,
DFS, Lex (or QuickLex) may take O(|C(E)|) time in the worst case. Note that the |C(E)|
can be exponentially bigger than |SB |.

Table 2 compares the worst-case time complexities of these algorithms to enumerate all
consistent cuts in SB when B is stable.

Let SB œ C(E) denote the set of consistent cuts that satisfy the stable or count predicate
B for the computation P = (E, æ). Then, based on our analysis we have the following
result:

I Theorem 2. Enumerating all consistent cuts in SB takes O(f · |SB |) time using the algo-
rithms given in this paper; where f is a polynomial function of |E| and n.

OPODIS 2017

35

Summary

Satisfy Stable Predicate B Satisfy Counting Predicate B

Our algorithms only enumerate the cuts of the
lattice that satisfy the predicate.

36

Future Work

• Lower bounds on algorithms that
enumerate global states satisfying stable
and counting predicates

• Other interesting classes of predicates that
can be efficiently enumerated.

37

Thanks.
Questions?

