


Mutual Exclusion

The Problem: design the entry and exit 
code in a way that guarantees that the 
mutual exclusion and deadlock-freedom 
properties are satisfied.
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Mutual Exclusion

• Mutual Exclusion: No two processes are in their 
critical sections at the same time.
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Mutual Exclusion

• Mutual Exclusion: No two processes are in their 
critical sections at the same time. 
 

• Deadlock-Freedom: If a process is trying to enter 
its critical section, then some process, not 
necessarily the same one, eventually enters its 
critical section. 
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Mutual Exclusion

• Mutual Exclusion: No two processes are in their 
critical sections at the same time. 
 

• Deadlock-Freedom: If a process is trying to enter 
its critical section, then some process, not 
necessarily the same one, eventually enters its 
critical section.  
 

• Starvation-Freedom: If a process is trying to 
enter its critical section, then this process must 
eventually enter its critical section.
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FIFO
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remainder code

Doorway

Waiting

critical section

exit code

A beginning process out):-first-in-FIFO (First

cannot execute its critical section before a 

waiting process executes its critical section.



Memory References

• Remote reference: slow
• Local reference: fast
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Memory References

• Remote reference: slow
• Local reference: fast

Depends on the memory model
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Memory Models: Simple Shared Memory

Shared memory

P1 P4P2 P3

All memory accesses are remote
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Memory Models: Coherent Caching

Local and remote memory accesses

Shared memory

P1 P4P2 P3

C1 C2 C3 C4
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Memory Models: Distributed Shared Memory

Local and remote memory accesses

P1 P4P2 P3

M1 M2 M3 M4
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Remote Memory Reference Complexity

RMR Complexity: The maximum number of 
remote memory references that a process 
may need to perform in its entry and exit 
sections.
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Algorithms Properties
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Algorithms Properties

Wait-free exit codes
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Algorithms Properties

Wait-free exit codes
Satisfy FIFO fairness
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Algorithms Properties

Wait-free exit codes
Satisfy FIFO fairness
Constant RMR complexity in CC and DSM models
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Algorithms Properties

Wait-free exit codes
Satisfy FIFO fairness
Constant RMR complexity in CC and DSM models
Not assumed that the number of processes is priori known
Use only O(n) shared memory locations
Make no assumptions on what and how memory is allocated
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Algorithms Properties

Wait-free exit codes
Satisfy FIFO fairness
Constant RMR complexity in CC and DSM models
Not assumed that the number of processes is priori known
Use only O(n) shared memory locations
Make no assumptions on what and how memory is allocated
Instruction set: Read/Write, Fetch-And-Store, Compare-And-Swap
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MCS Algorithm Properties

Wait-free exit code
Satisfy FIFO fairness
Constant RMR complexity in CC and DSM models
Not assumed that the number of processes is priori known
Use only O(n) shared memory locations
Make no assumptions on what and how memory is allocated
Instruction set: Read/Write, Fetch-And-Store, Compare-And-Swap
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Wait-Free Vs. Not Wait-Free

• Exiting process may need to wait for 
entering process
• Particularly problematic in high contention 

scenarios
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Space Complexity When Using L Locks
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• First algorithm: O(Ln) shared memory locations
• Second algorithm: O(L+n) shared memory locations



Computational Model: Atomic Instruction Set

• Atomic read/write
• Compare-And-Swap (Destination, New, Old)
• Fetch-And-Store (Destination, Value)
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The First Algorithm



next
locked
status

Initially

Each process:

Nodes next
locked
status

Tail  
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Process p Enters

Initializing

Tail  

p’s node next: NIL
locked: False
status: Locked
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Process p Enters

Tail  

In the queue
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p’s predecessor

p’s node next: NIL
locked: False
status: Locked

Threads into the 
queueFAS



Process p Enters

Tail  

Continues to critical 
section
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p’s predecessor

p’s node

next: NIL
locked: False
status: Locked



Process q Enters

q’s node

Tail  next: NIL
locked: False
status: Locked

next: NIL
locked: False
status: Locked

In critical section

Initializing 
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Process q Enters

q’s node

Tail  next: NIL
locked: False
status: Locked

next: NIL
locked: False
status: Locked

In critical section

Threads into the 
queue
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q’s predecessor

1

FAS



Process q Enters

q’s node

Tail  next: NIL
locked: False
status: Locked

next: NIL
locked: False
status: Locked

In critical section

Prepares to wait
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q’s predecessor

1



Process q Enters

q’s node

Tail  next: NIL
locked: False
status: Locked

next: NIL
locked: True
status: Locked

In critical section

Prepares to wait
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q’s predecessor

1



Process q Enters

q’s node

Tail  next: 
locked: False
status: Locked

next: NIL
locked: True
status: Locked

In critical section

Prepares to wait

Rotem Dvir                                                             OPODIS 2017
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Process q Enters

q’s node

Tail  next: 
locked: False
status: Locked

next: NIL
locked: True
status: Locked

In critical section

Prepares to wait
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q’s predecessor



Process q Enters

q’s node

Tail  next: 
locked: False
status: Locked

next: NIL
locked: True
status: Locked

In critical section

Waiting
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q’s predecessor

Prepares to wait



Process p Exits

q’s node

Tail  next: 
locked: False
status: Locked

next: NIL
locked: True
status: Locked

Exiting

Waiting
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q’s predecessor



Process p Exits

q’s node

Tail  next: 
locked: False
status: Unlocked

next: NIL
locked: True
status: Locked

Exiting

Waiting
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Process p Exits

q’s node

Tail  next: 
locked: False
status: Unlocked

next: NIL
locked: True
status: Locked

Exiting

Waiting
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Process p Exits

q’s node

Tail  next: 
locked: False
status: Unlocked

next: NIL
locked: False
status: Locked

Exiting

Waiting
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q’s predecessor



Process q Enters

q’s node

Tail  next: NIL
locked: False
status: Locked

Continues to critical 
section
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Process q In Critical Section

Tail  next: NIL
locked: False
status: Locked

In critical section
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Process r Enters

r’s node

Tail  

next: NIL
locked: False
status: Locked

Initializing

In critical section
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next: NIL
locked: False
status: Locked



Process r Enters

r’s node

Tail  next: NIL
locked: False
status: Locked

next: NIL
locked: False
status: Locked
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r’s predecessor

Threads into the 
queue

1

In critical section
FAS



Process r Enters

r’s node

Tail  next: NIL
locked: False
status: Locked

next: NIL
locked: False
status: Locked
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r’s predecessor

Prepares to wait

1

In critical section



Process r Enters

r’s node

Tail  next: NIL
locked: False
status: Locked

next: NIL
locked: True
status: Locked
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r’s predecessor

1

Prepares to wait

In critical section



Process q Exits

r’s node

Tail  next: NIL
locked: False
status: Locked

next: NIL
locked: True
status: Locked
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Exiting

1

Prepares to wait



Process q Exits

r’s node

Tail  next: NIL
locked: False
status: Unlocked

next: NIL
locked: True
status: Locked
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r’s predecessor

1

Exiting

Prepares to wait



Process q Exits

r’s node

Tail  next: NIL
locked: False
status: Unlocked

next: NIL
locked: True
status: Locked
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r’s predecessor

1

Prepares to wait

ExitingIn remainder code



Process r Enters

r’s node

Tail  next: NIL
locked: False
status: Unlocked

next: NIL
locked: True
status: Locked
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r’s predecessor

1

Prepares to wait

In remainder code



Process r Enters

r’s node

Tail  next: 
locked: False
status: Unlocked

next: NIL
locked: True
status: Locked
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r’s predecessor

1
2

Prepares to wait

In remainder code



Process r Enters

r’s node

Tail  next: 
locked: False
status: Unlocked

next: NIL
locked: True
status: Locked
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r’s predecessor

Noticing q not in 
critical section

In remainder code



Process r Enters

r’s node

Tail  next: 
locked: False
status: Locked

next: NIL
locked: True
status: Locked
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r’s predecessor

Noticing q not in 
critical section

In remainder code



Process r Enters

r’s node

Tail  next: 
locked: False
status: Locked

next: NIL
locked: True
status: Locked
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r’s predecessor

Continues to critical 
section

In remainder code



Summary

Wait-free exit codes
Satisfy FIFO fairness
Constant RMR complexity in CC and DSM models
Not assumed that the number of processes is priori known
Use only O(n) shared memory locations
Make no assumptions on what and how memory is allocated
Instruction set: Read/Write, Fetch-And-Store, Compare-And-Swap



Open Questions

Algorithms extensions:
• Readers-writers lock
• Group mutual exclusion
• Abortable
• Recoverable

Rotem Dvir                                                             OPODIS 2017




