

Mutual Exclusion

The Problem: design the entry and exit
code in a way that guarantees that the
mutual exclusion and deadlock-freedom
properties are satisfied.

Rotem Dvir OPODIS 2017

remainder code

entry code

critical section

exit code

Mutual Exclusion

• Mutual Exclusion: No two processes are in their
critical sections at the same time.

Rotem Dvir OPODIS 2017

remainder code

entry code

critical section

exit code

Mutual Exclusion

• Mutual Exclusion: No two processes are in their
critical sections at the same time.

• Deadlock-Freedom: If a process is trying to enter
its critical section, then some process, not
necessarily the same one, eventually enters its
critical section.

Rotem Dvir OPODIS 2017

remainder code

entry code

critical section

exit code

Mutual Exclusion

• Mutual Exclusion: No two processes are in their
critical sections at the same time.

• Deadlock-Freedom: If a process is trying to enter
its critical section, then some process, not
necessarily the same one, eventually enters its
critical section.

• Starvation-Freedom: If a process is trying to
enter its critical section, then this process must
eventually enter its critical section.

Rotem Dvir OPODIS 2017

remainder code

entry code

critical section

exit code

FIFO

Rotem Dvir OPODIS 2017

remainder code

Doorway

Waiting

critical section

exit code

A beginning process out):-first-in-FIFO (First

cannot execute its critical section before a

waiting process executes its critical section.

Memory References

• Remote reference: slow
• Local reference: fast

Rotem Dvir OPODIS 2017

Memory References

• Remote reference: slow
• Local reference: fast

Depends on the memory model

Rotem Dvir OPODIS 2017

Memory Models: Simple Shared Memory

Shared memory

P1 P4P2 P3

All memory accesses are remote
Rotem Dvir OPODIS 2017

Memory Models: Coherent Caching

Local and remote memory accesses

Shared memory

P1 P4P2 P3

C1 C2 C3 C4

Rotem Dvir OPODIS 2017

X = 1

X = 2

X = 2X = 1

X = 2

Remote
Read

Remote
Write
Local
Read

Memory Models: Distributed Shared Memory

Local and remote memory accesses

P1 P4P2 P3

M1 M2 M3 M4

Rotem Dvir OPODIS 2017

Remote Memory Reference Complexity

RMR Complexity: The maximum number of
remote memory references that a process
may need to perform in its entry and exit
sections.

Rotem Dvir OPODIS 2017

Algorithms Properties

Rotem Dvir OPODIS 2017

Algorithms Properties

Wait-free exit codes

Rotem Dvir OPODIS 2017

Algorithms Properties

Wait-free exit codes
Satisfy FIFO fairness

Rotem Dvir OPODIS 2017

Algorithms Properties

Wait-free exit codes
Satisfy FIFO fairness
Constant RMR complexity in CC and DSM models

Rotem Dvir OPODIS 2017

Algorithms Properties

Wait-free exit codes
Satisfy FIFO fairness
Constant RMR complexity in CC and DSM models
Not assumed that the number of processes is priori known

Rotem Dvir OPODIS 2017

Algorithms Properties

Wait-free exit codes
Satisfy FIFO fairness
Constant RMR complexity in CC and DSM models
Not assumed that the number of processes is priori known
Use only O(n) shared memory locations

Rotem Dvir OPODIS 2017

Algorithms Properties

Wait-free exit codes
Satisfy FIFO fairness
Constant RMR complexity in CC and DSM models
Not assumed that the number of processes is priori known
Use only O(n) shared memory locations
Make no assumptions on what and how memory is allocated

Rotem Dvir OPODIS 2017

Algorithms Properties

Wait-free exit codes
Satisfy FIFO fairness
Constant RMR complexity in CC and DSM models
Not assumed that the number of processes is priori known
Use only O(n) shared memory locations
Make no assumptions on what and how memory is allocated
Instruction set: Read/Write, Fetch-And-Store, Compare-And-Swap

Rotem Dvir OPODIS 2017

MCS Algorithm Properties

Wait-free exit code
Satisfy FIFO fairness
Constant RMR complexity in CC and DSM models
Not assumed that the number of processes is priori known
Use only O(n) shared memory locations
Make no assumptions on what and how memory is allocated
Instruction set: Read/Write, Fetch-And-Store, Compare-And-Swap

Rotem Dvir OPODIS 2017

Wait-Free Vs. Not Wait-Free

• Exiting process may need to wait for
entering process
• Particularly problematic in high contention

scenarios

Rotem Dvir OPODIS 2017

remainder code

entry code

critical section

exit code

Space Complexity When Using L Locks

Rotem Dvir OPODIS 2017

• First algorithm: O(Ln) shared memory locations
• Second algorithm: O(L+n) shared memory locations

Computational Model: Atomic Instruction Set

• Atomic read/write
• Compare-And-Swap (Destination, New, Old)
• Fetch-And-Store (Destination, Value)

Rotem Dvir OPODIS 2017

The First Algorithm

next
locked
status

Initially

Each process:

Nodes next
locked
status

Tail

Rotem Dvir OPODIS 2017

Process p Enters

Initializing

Tail

p’s node next: NIL
locked: False
status: Locked

Rotem Dvir OPODIS 2017

Process p Enters

Tail

In the queue

Rotem Dvir OPODIS 2017

p’s predecessor

p’s node next: NIL
locked: False
status: Locked

Threads into the
queueFAS

Process p Enters

Tail

Continues to critical
section

Rotem Dvir OPODIS 2017

p’s predecessor

p’s node

next: NIL
locked: False
status: Locked

Process q Enters

q’s node

Tail next: NIL
locked: False
status: Locked

next: NIL
locked: False
status: Locked

In critical section

Initializing

Rotem Dvir OPODIS 2017

Process q Enters

q’s node

Tail next: NIL
locked: False
status: Locked

next: NIL
locked: False
status: Locked

In critical section

Threads into the
queue

Rotem Dvir OPODIS 2017

q’s predecessor

1

FAS

Process q Enters

q’s node

Tail next: NIL
locked: False
status: Locked

next: NIL
locked: False
status: Locked

In critical section

Prepares to wait

Rotem Dvir OPODIS 2017

q’s predecessor

1

Process q Enters

q’s node

Tail next: NIL
locked: False
status: Locked

next: NIL
locked: True
status: Locked

In critical section

Prepares to wait

Rotem Dvir OPODIS 2017

q’s predecessor

1

Process q Enters

q’s node

Tail next:
locked: False
status: Locked

next: NIL
locked: True
status: Locked

In critical section

Prepares to wait

Rotem Dvir OPODIS 2017

q’s predecessor

1
2

Process q Enters

q’s node

Tail next:
locked: False
status: Locked

next: NIL
locked: True
status: Locked

In critical section

Prepares to wait

Rotem Dvir OPODIS 2017

q’s predecessor

Process q Enters

q’s node

Tail next:
locked: False
status: Locked

next: NIL
locked: True
status: Locked

In critical section

Waiting

Rotem Dvir OPODIS 2017

q’s predecessor

Prepares to wait

Process p Exits

q’s node

Tail next:
locked: False
status: Locked

next: NIL
locked: True
status: Locked

Exiting

Waiting

Rotem Dvir OPODIS 2017

q’s predecessor

Process p Exits

q’s node

Tail next:
locked: False
status: Unlocked

next: NIL
locked: True
status: Locked

Exiting

Waiting

Rotem Dvir OPODIS 2017

q’s predecessor

Process p Exits

q’s node

Tail next:
locked: False
status: Unlocked

next: NIL
locked: True
status: Locked

Exiting

Waiting

Rotem Dvir OPODIS 2017

q’s predecessor

Process p Exits

q’s node

Tail next:
locked: False
status: Unlocked

next: NIL
locked: False
status: Locked

Exiting

Waiting

Rotem Dvir OPODIS 2017

q’s predecessor

Process q Enters

q’s node

Tail next: NIL
locked: False
status: Locked

Continues to critical
section

Rotem Dvir OPODIS 2017

Process q In Critical Section

Tail next: NIL
locked: False
status: Locked

In critical section

Rotem Dvir OPODIS 2017

Process r Enters

r’s node

Tail

next: NIL
locked: False
status: Locked

Initializing

In critical section

Rotem Dvir OPODIS 2017

next: NIL
locked: False
status: Locked

Process r Enters

r’s node

Tail next: NIL
locked: False
status: Locked

next: NIL
locked: False
status: Locked

Rotem Dvir OPODIS 2017

r’s predecessor

Threads into the
queue

1

In critical section
FAS

Process r Enters

r’s node

Tail next: NIL
locked: False
status: Locked

next: NIL
locked: False
status: Locked

Rotem Dvir OPODIS 2017

r’s predecessor

Prepares to wait

1

In critical section

Process r Enters

r’s node

Tail next: NIL
locked: False
status: Locked

next: NIL
locked: True
status: Locked

Rotem Dvir OPODIS 2017

r’s predecessor

1

Prepares to wait

In critical section

Process q Exits

r’s node

Tail next: NIL
locked: False
status: Locked

next: NIL
locked: True
status: Locked

Rotem Dvir OPODIS 2017

r’s predecessor

Exiting

1

Prepares to wait

Process q Exits

r’s node

Tail next: NIL
locked: False
status: Unlocked

next: NIL
locked: True
status: Locked

Rotem Dvir OPODIS 2017

r’s predecessor

1

Exiting

Prepares to wait

Process q Exits

r’s node

Tail next: NIL
locked: False
status: Unlocked

next: NIL
locked: True
status: Locked

Rotem Dvir OPODIS 2017

r’s predecessor

1

Prepares to wait

ExitingIn remainder code

Process r Enters

r’s node

Tail next: NIL
locked: False
status: Unlocked

next: NIL
locked: True
status: Locked

Rotem Dvir OPODIS 2017

r’s predecessor

1

Prepares to wait

In remainder code

Process r Enters

r’s node

Tail next:
locked: False
status: Unlocked

next: NIL
locked: True
status: Locked

Rotem Dvir OPODIS 2017

r’s predecessor

1
2

Prepares to wait

In remainder code

Process r Enters

r’s node

Tail next:
locked: False
status: Unlocked

next: NIL
locked: True
status: Locked

Rotem Dvir OPODIS 2017

r’s predecessor

Noticing q not in
critical section

In remainder code

Process r Enters

r’s node

Tail next:
locked: False
status: Locked

next: NIL
locked: True
status: Locked

Rotem Dvir OPODIS 2017

r’s predecessor

Noticing q not in
critical section

In remainder code

Process r Enters

r’s node

Tail next:
locked: False
status: Locked

next: NIL
locked: True
status: Locked

Rotem Dvir OPODIS 2017

r’s predecessor

Continues to critical
section

In remainder code

Summary

Wait-free exit codes
Satisfy FIFO fairness
Constant RMR complexity in CC and DSM models
Not assumed that the number of processes is priori known
Use only O(n) shared memory locations
Make no assumptions on what and how memory is allocated
Instruction set: Read/Write, Fetch-And-Store, Compare-And-Swap

Open Questions

Algorithms extensions:
• Readers-writers lock
• Group mutual exclusion
• Abortable
• Recoverable

Rotem Dvir OPODIS 2017

