
12/20/2017

1

Lower Bounds on the
Amortized Time Complexity

of Shared Objects

Hagit Attiya, Technion
Arie Fouren, Ono Academic College

1

The Model

• Asynchronous cache-coherent
(CC) shared-memory model

• Remote Memory Reference
(RMR) complexity:

• count only the events that
generate process-memory
interconnection traffic

• ignore busy-wait loops on
unchanged local variables

2

12/20/2017

2

Step Complexity Measures

• Amortized step complexity:
average number of steps performed by invoked operations
(worst case over all possible executions)

• measures performance of the whole system, not individual
operations

• suitable for lock-free implementations,
where operations may never terminate

• Point contention �̇�: # simultaneously active processes

3

Upper Bounds on Lock-free Implementations

[Ruppert 2017]
The amortized step complexity of lock-free stacks, queues,
linked lists, doubly-linked lists, binary trees and union-find
have an additive factor of point contention �̇�
Is this additive factor of point contention �̇� inherent ?
This work:
The additive factor of �̇� is inherent for stacks, queues, heaps,
linked lists and search trees

4

12/20/2017

3

Our Lower Bounds I

reduction to the Ω �̇� lower bound on MUTEX [Kim,
Anderson 2012], extended to amortized step complexity
relies only on the abstract definition of shared objects,

not on implementation details

5

Any implementation of stacks, queues and heaps, using reads,
writes and conditional operations (e.g., CAS), has Ω �̇�

amortized RMR complexity, provided �̇� ∈ 𝑂 log log 𝑛

Our Lower Bounds II

E.g., linked lists, skip lists, binary search trees, B-trees
does not require 𝑑𝑒𝑙𝑒𝑡𝑒() operation
implementation-dependent
bounds only step complexity, not RMRs

6

Any implementation of data structures based on a connected
graph of nodes (graph-based-set), using 1-revealing primitives
(reads, writes, CAS, Test&Set, LL/SC, ...), has Ω �̇� amortized
step complexity, provided �̇� ∈ 𝑂(log log 𝑛)

12/20/2017

4

Graph-based-set

• A shared variable contains data +
𝑑 pointers to other variables

• Memory graph 𝐺 𝛼 = (𝑉, 𝐸)

• Special node ℎ𝑒𝑎𝑑

• One operation 𝑎𝑑𝑑 𝑒

Representation invariant:
𝑒 ∈ 𝑆 after 𝛼 if and only if
there is a directed path from
𝑆. ℎ𝑒𝑎𝑑 to 𝑣 = 𝑒 in 𝐺(𝛼)

0v

1v

2v 3v

7

• Execution of 3𝑘 processes
• Each process 𝑝 invokes 𝑎𝑑𝑑(𝑖𝑑) once
• 3𝑘 processes collectively perform Ω 𝑘ଶ steps

 Any implementation of graph-based-set has at least Ω 𝑘 = Ω(�̇�)
amortized step complexity

Proof Overview

8

12/20/2017

5

Proof Overview

9

In each round,
all processes
perform the
same type of
operation

Proof Overview

10

Initially, all
processes are
invisible to
each other

Invisible
processes can
be removed
without
affecting other
processes

12/20/2017

6

Proof Overview

11

In each round,
each invisible
process takes
one step

A constant
number of
invisible
processes
become
visible and
stop

Proof Overview

12

Some invisible
processes are
retroactively
deleted from
the execution
to keep other
processes
invisible

12/20/2017

7

Proof Overview

13

Proof Overview

14

12/20/2017

8

Proof Overview

15

Proof Overview

16

𝑘

After 𝑘 rounds,
𝑘 processes are
invisible

Collectively
perform Ω 𝑘ଶ

steps ⇒
Ω 𝑘 = Ω(�̇�)
amortized step
complexity

12/20/2017

9

How to keep processes invisible ?

Evidence variables of process 𝑝

• May contain “traces” of 𝑝’s events
• May change if 𝑝’s events are

deleted from the execution
Invisible set of processes 𝑃
• Disjoint sets of evidence variables
• Erasing a subset of 𝑃 is undetected

by other invisible processes

𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒(𝑝1)

𝑝1

𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒(𝑝2)

𝑝2

𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒(𝑝3)

𝑝3

Invisible set

17

How to keep processes invisible ?
Eliminating conflicts with previous rounds
Visibility graph
• Nodes: invisible processes
• 𝑝 → 𝑝 if 𝑝 is about to “see”

an evidence variable of 𝑝

Turán’s theorem
 eliminate conflicts while
keeping a constant fraction of
the invisible processes

ip
jp

18

12/20/2017

10

How to keep processes invisible?
Eliminating conflicts in the same round
• Some variable is accessed by at least

|𝑃| different processes or

• At least 𝑃
 different variables are

accessed

In both cases, at least 𝑃

processes can be kept invisible,
since primitives are 1-revealing

Invisible set 𝑃

√𝑃 processes

√𝑃 variables
19

How to keep processes invisible?
-Revealing Primitives

• 𝑘 operations accessing the same
variable can be ordered so that
only one succeeds & the rest fail

• The successful process becomes
visible & others remain invisible

• Reads, writes, and conditional
operations (CAS, LL/SC,
Test&Set, …) are 1-revealing

20

12/20/2017

11

How to keep the graph-based-set small ?

• Accessible variables of a process
𝒑𝒊: there is a directed path from
an evidence variable of 𝑝 to
these variables in the memory
graph 𝐺

• Accessible variables of a graph-
based-set 𝑺: there is a directed
path from 𝑆. ℎ𝑒𝑎𝑑 to these
variables in the memory graph 𝐺

accessibleVariables(S)

 S.head

S

 evidence(p)

accessibleVariables(p)

ip

21

How to keep the graph-based-set small ?
Keep evidence and accessible sets small
• round 𝑟 :

• 𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒 𝑝 ≤ 𝑟

• 𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒 𝑝 ≤ 𝑟(𝑑 + 1)

 evidence(p)

accessibleVariables(p)

ip

22

12/20/2017

12

How to keep the graph-based-set small ?
Keep each process’ evidence set small
• round 𝑟 :

• 𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒 𝑝 ≤ 𝑟

• 𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒 𝑝 ≤ 𝑟(𝑑 + 1)

• round 𝑟 + 1 :
• 𝑝 accesses at most one variable

• 𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒 𝑝 grows at most by 1
• 𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑝 grows at

most by (𝑑 + 1)

 evidence(p)

accessibleVariables(p)

ip

23

How to keep the graph-based-set small ?

• round 𝑟:
• 𝑆 contains 𝑟 processes
• 𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑆

≤
(ାଵ)(ௗାଵ)

ଶ

• round 𝑟 + 1:
• at most one process succeeds to

add its 𝑖𝑑 to 𝑆
• the number of processes in 𝑆

grows at most by 1
• 𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑆

grows at most by 𝑟(𝑑 + 1)

accessibleVariables(S)

 S.head

S

accessibleVariables(p)

accessibleVariables(S)

 S.head

S
p

24

12/20/2017

13

How to keep processes invisible ?
Summary

Invisible set
p

p
p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

• round 𝑟:
|𝑃|

25

How to keep processes invisible ?
Summary
• round 𝑟:

|𝑃|

• round 𝑟 + 1:

𝑃ାଵ ≥
𝑃

2𝑑 + 3

and at most 2 processes become
visible

Invisible set
p

p
p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

26

12/20/2017

14

Summary: the lower bound on the amortized
step complexity of graph-based-set
Any implementation of graph-based-set using only 1-revealing
primitives has an execution
• with �̇� processes
• each performing a single 𝑎𝑑𝑑() operation
• Ω(�̇�ଶ) steps by all processes

 Ω(�̇�) amortized step complexity of 𝑎𝑑𝑑() operation,
provided �̇� ∈ 𝑂 log log 𝑛

27

Summary: the lower bound on the amortized
step complexity of graph-based data structures
The amortized step complexity of any implementation of
• linked lists
• skip lists
• binary search trees
• B-trees
• other data structures based on graph-based-set

using only 1-revealing primitives is Ω(�̇�), provided �̇� ∈ 𝑂 log log 𝑛

28

12/20/2017

15

Thank you very much for your
attention !

29

