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The Model

• Asynchronous cache-coherent 
(CC) shared-memory model

• Remote Memory Reference 
(RMR) complexity: 

• count only the events that 
generate process-memory 
interconnection traffic

• ignore busy-wait loops on 
unchanged local variables
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Step Complexity Measures 

• Amortized step complexity:
average number of steps performed by invoked operations 
(worst case over all possible executions)

• measures performance of the whole system, not individual 
operations

• suitable for lock-free implementations, 
where operations may never terminate

• Point contention �̇�: # simultaneously active processes 
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Upper Bounds on Lock-free Implementations

[Ruppert 2017]
The amortized step complexity of lock-free stacks, queues, 
linked lists, doubly-linked lists, binary trees and union-find 
have an additive factor of point contention �̇�
Is this additive factor of point contention �̇� inherent ?
This work:
The additive factor of �̇� is inherent for stacks, queues, heaps, 
linked lists and search trees
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Our Lower Bounds I

reduction to the Ω �̇� lower bound on MUTEX [Kim, 
Anderson 2012], extended to amortized step complexity
relies only on the abstract definition of shared objects, 

not on implementation details

5

Any implementation of stacks, queues and heaps, using reads, 
writes and conditional operations (e.g., CAS), has Ω �̇�

amortized RMR complexity, provided �̇� ∈ 𝑂 log log 𝑛 

Our Lower Bounds II

E.g., linked lists, skip lists, binary search trees, B-trees 
does not require 𝑑𝑒𝑙𝑒𝑡𝑒() operation
implementation-dependent
bounds only step complexity, not RMRs
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Any implementation of data structures based on a connected 
graph of nodes (graph-based-set), using 1-revealing primitives 
(reads, writes, CAS, Test&Set, LL/SC, ...), has Ω �̇� amortized 
step complexity, provided �̇� ∈ 𝑂( log log 𝑛  )



12/20/2017

4

Graph-based-set

• A shared variable contains data + 
𝑑 pointers to other variables

• Memory graph 𝐺 𝛼 = (𝑉, 𝐸)

• Special node ℎ𝑒𝑎𝑑

• One operation 𝑎𝑑𝑑 𝑒

Representation invariant:
𝑒 ∈ 𝑆 after 𝛼 if and only if 
there is a directed path from 
𝑆. ℎ𝑒𝑎𝑑 to 𝑣 = 𝑒 in 𝐺(𝛼)

0v

1v

2v 3v
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• Execution of 3𝑘 processes
• Each process 𝑝 invokes 𝑎𝑑𝑑(𝑖𝑑) once
• 3𝑘 processes collectively perform Ω 𝑘ଶ  steps

 Any implementation of graph-based-set has at least Ω 𝑘 = Ω(�̇�)
amortized step complexity

Proof Overview 
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Proof Overview 

9

In each round, 
all processes 
perform the 
same type of 
operation

Proof Overview 
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Initially, all 
processes are 
invisible to 
each other 

Invisible 
processes can 
be removed 
without 
affecting other 
processes
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Proof Overview 
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In each round, 
each invisible 
process takes 
one step

A constant 
number of 
invisible 
processes 
become 
visible and 
stop

Proof Overview 
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Some invisible 
processes are 
retroactively 
deleted from 
the execution 
to keep other 
processes 
invisible
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Proof Overview 
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Proof Overview 
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Proof Overview 

15

Proof Overview 
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𝑘

After 𝑘 rounds,
𝑘 processes are  
invisible

Collectively 
perform Ω 𝑘ଶ

steps ⇒
Ω 𝑘 = Ω(�̇�)
amortized step 
complexity
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How to keep processes invisible ?

Evidence variables of process 𝑝

• May contain “traces” of 𝑝’s events
• May change if 𝑝’s events are 

deleted from the execution
Invisible set of processes 𝑃
• Disjoint sets of evidence variables 
• Erasing a subset of 𝑃 is undetected 

by other invisible processes

𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒(𝑝1)

𝑝1 

𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒(𝑝2)

𝑝2  

𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒(𝑝3)

𝑝3  

Invisible set
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How to keep processes invisible ?
Eliminating conflicts with previous rounds
Visibility graph 
• Nodes: invisible processes
• 𝑝 → 𝑝 if 𝑝 is about to “see” 

an evidence variable of 𝑝

Turán’s theorem 
 eliminate conflicts while 
keeping a constant fraction of 
the invisible processes

ip
jp
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How to keep processes invisible?
Eliminating conflicts in the same round
• Some variable is accessed by at least 

|𝑃|  different processes or

• At least 𝑃
  different variables are 

accessed

In both cases, at least 𝑃
 

processes can be kept invisible, 
since primitives are 1-revealing

Invisible set 𝑃 

√𝑃 processes 

√𝑃 variables 
19

How to keep processes invisible?
-Revealing Primitives

• 𝑘 operations accessing the same 
variable can be ordered so that 
only one succeeds & the rest fail

• The successful process becomes 
visible & others remain invisible

• Reads, writes, and conditional 
operations (CAS, LL/SC, 
Test&Set, …) are 1-revealing 
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How to keep the graph-based-set small ?

• Accessible variables of a process 
𝒑𝒊: there is a directed path from 
an evidence variable of 𝑝 to 
these variables in the memory 
graph 𝐺

• Accessible variables of a graph-
based-set 𝑺: there is a directed 
path from 𝑆. ℎ𝑒𝑎𝑑 to these 
variables in the memory graph 𝐺

accessibleVariables(S)

 

 S.head

S

 evidence(p)

accessibleVariables(p)

ip
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How to keep the graph-based-set small ? 
Keep evidence and accessible sets small
• round 𝑟 :

• 𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒 𝑝 ≤ 𝑟

• 𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒 𝑝 ≤ 𝑟(𝑑 + 1)

 evidence(p)

accessibleVariables(p)

ip
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How to keep the graph-based-set small ? 
Keep each process’ evidence set small
• round 𝑟 :

• 𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒 𝑝 ≤ 𝑟

• 𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒 𝑝 ≤ 𝑟(𝑑 + 1)

• round 𝑟 + 1 : 
• 𝑝 accesses at most one variable

• 𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒 𝑝 grows at most by 1
• 𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑝 grows at 

most by (𝑑 + 1)

 evidence(p)

accessibleVariables(p)

ip
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How to keep the graph-based-set small ?

• round 𝑟: 
• 𝑆 contains 𝑟 processes
• 𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑆

≤
(ାଵ)(ௗାଵ)

ଶ

• round 𝑟 + 1:
• at most one process succeeds to 

add its 𝑖𝑑 to 𝑆
• the number of processes in 𝑆

grows at most by 1
• 𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑆

grows at most by 𝑟(𝑑 + 1)

accessibleVariables(S)

 

 S.head

S

accessibleVariables(p)

accessibleVariables(S)

 

 S.head

S
p
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How to keep processes invisible ?
Summary

Invisible set
p

p
p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

• round 𝑟: 
|𝑃|
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How to keep processes invisible ?
Summary
• round 𝑟: 

|𝑃|

• round 𝑟 + 1: 

𝑃ାଵ ≥
𝑃

2𝑑 + 3

 

and at most 2 processes become 
visible

Invisible set
p

p
p

p

p

p

p

p

p

p

p

p

p

p

p

p

p
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Summary: the lower bound on the amortized 
step complexity of graph-based-set
Any implementation of graph-based-set using only 1-revealing 
primitives has an execution 
• with �̇� processes
• each performing a single 𝑎𝑑𝑑( ) operation
• Ω(�̇�ଶ) steps by all processes

 Ω(�̇�) amortized step complexity of 𝑎𝑑𝑑( ) operation,
provided �̇� ∈ 𝑂 log log 𝑛 
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Summary: the lower bound on the amortized 
step complexity of graph-based data structures
The amortized step complexity of any implementation of 
• linked lists 
• skip lists 
• binary search trees 
• B-trees 
• other data structures based on graph-based-set 

using only 1-revealing primitives is Ω(�̇�), provided �̇� ∈ 𝑂 log log 𝑛 
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Thank you very much for your 
attention !
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