12/20/2017

Lower Bounds on the
Amortized Time Complexity
of Shared Objects

Hagit Attiya, Technion
Arie Fouren, Ono Academic College

The Model

* Asynchronous cache-coherent N
(CC) shared-memory model

* Remote Memory Reference J][,: J =f_cxne |
(RMR) complexity: P <7 P
* count only the events that b 1? v
generate process-memory AV 4

interconnection traffic
* ignore busy-wait loops on

Shared Memory

unchanged local variables

12/20/2017

Step Complexity Measures

* Amortized step complexity:
average number of steps performed by invoked operations
(worst case over all possible executions)

* measures performance of the whole system, not individual
operations

* suitable for lock-free implementations,
where operations may never terminate

* Point contention ¢: # simultaneously active processes

Upper Bounds on Lock-free Implementations

[Ruppert 2017]

The amortized step complexity of lock-free stacks, queues,
linked lists, doubly-linked lists, binary trees and union-find
have an additive factor of point contention ¢

» s this additive factor of point contention ¢ inherent ?

This work:
The additive factor of ¢ is inherent for stacks, queues, heaps,
linked lists and search trees

12/20/2017

Our Lower Bounds |

Any implementation of stacks, queues and heaps, using reads,
writes and conditional operations (e.g., CAS), has Q(¢)

amortized RMR complexity, provided ¢ € O(w/loglog n)

»reduction to the Q(¢) lower bound on MUTEX [Kim,
Anderson 2012], extended to amortized step complexity

»relies only on the abstract definition of shared objects,
not on implementation details

Our Lower Bounds Il

Any implementation of data structures based on a connected
graph of nodes (), using
(reads, writes, CAS, Test&Set, LL/SC, ...), has Q(¢) amortized

step complexity, provided ¢ € O(/loglogn)

E.g., linked lists, skip lists, binary search trees, B-trees
Mdoes not require delete() operation
[Xlimplementation-dependent

[XIbounds only step complexity, not RMRs

6

12/20/2017

Graph-based-set

* A shared variable contains data +
d pointers to other variables

* Memory graph G(a) = (V,E)
* Special node head
* One operation add(e)

Representation invariant:

e € S after a if and only if
there is a directed path from
S.headtov =¢einG(a)

Vo
4/

2
Data

Data
o o

Vi

S

Data

Proof Overview

* Execution of 3k processes

* Each process p; invokes add(id;) once

* 3k processes collectively perform Q(k?) steps

= Any implementation of graph-based-set has at least Q(k) = Q(¢)

amortized step complexity

12/20/2017

Proof Overview

In each round,
all processes
perform the

\\\\\\\\\\\\

same type of
operation

Proof Overview

Initially, all

RARAAAA A AR NG
\ J

v

‘_

)
c

® g 2
© o o SIS =
o o £ 0 3 o O
w2+ L an O 2K
w90 v EIS9
U = 2 U g o8 W
o v Cc w o ¢ c 9 o
oS 9 SO =20
S = © nre = =
o .£ o £ 00 3 w© a

10

12/20/2017

Proof Overview

In each round,

Qo wn

me

.Ib..na = 4 Eo]
28 _ t©o o ¢
gve Sg2ae?d
= 90% Cao2gEQ
9y G0EZO9Y Ao
® 2 ¢ S s5>2Q2 901309
0 o o < c £ aoco0osSh

Proof Overview

Some invisible
processes are
to keep other
processes

the execution
invisible

retroactively
deleted from

12

12/20/2017

Proof Overview

rrrrr

Proof Overview
e
L o
O
O
0
Q

12/20/2017

Proof Overview

15

Proof Overview

perform Q(k?)

steps =
amortized step

After k rounds,
k processes are
invisible
Collectively
Q(k) = Q(c)
complexity

16

12/20/2017

How to keep processes invisible ?

Evidence variables of process p; Invisible set
* May contain “traces” of p;’s events
D2

* May change if p;’s events are p1
deleted from the execution coidence(ny)
Invisible set of processes P evidence(p;)

* Disjoint sets of evidence variables
D3

* Erasing a subset of P is undetected
by other invisible processes

evidence(pz)

How to keep processes invisible ?
Eliminating conflicts with previous rounds

T T [R .\pi
VlSlbllltv_gra_p.h o Po— O
* Nodes: invisible processes /,

Jo

/‘ .\ \ \\
l"’/ \\\\ /\\k.
O« @ -0
B \ /\\ / \\.

Turan’s theorem @)
P ™ - o

= eliminate conflicts while oF T PN
keeping a constant fraction of
the invisible processes

”

* p; — p; if p; is about to “see” O
an evidence variable of Dj \
o

N

12/20/2017

How to keep processes invisible?

Eliminating conflicts in the same round

* Some variable is accessed by at least
+/|P| different processes or

* At least /| P| different variables are
accessed

>In both cases, at least 1/ |P|
processes can be kept invisible,
since primitives are 1-revealing

\/ﬁ processes

_Invisible set P

2102219991022
||

lllllllll

b /P variables
How to keep processes invisible?
1-Revealing Primitives
* k operations accessing the same ' cAS() X
variable can be ordered so that F—— X

only one succeeds & the rest fail

* The successful process becomes K —

visible & others remain invisible

* Reads, writes, and conditional
operations (CAS, LL/SC,
Test&Set, ...) are 1-revealing

20

-
B CcAS(L w) Xf
cAs(L w) w

CASWU, W) xf
A
CAS(u, w) xf
A
CAS(U, W) x:
A

1

10

12/20/2017

How to keep the graph-based-set small ?

* Accessible variables of a process
p;: there is a directed path from
an evidence variable of p; to
these variables in the memory
graph G accessibleVariables(p)

* Accessible variables of a graph-

based-set S: there is a directed S
path from S. head to these B
variables in the memory graph G s head

accessibleVariables(S)
21

How to keep the graph-based-set small ?
Keep evidence and accessible sets small

*round 7 :
* |evidence(p)| <r
* |laccessible(p)| < r(d + 1)

accessibleVariables(p)

22

11

12/20/2017

How to keep the graph-based-set small ?
Keep each process’ evidence set small

e round r:

* |evidence(p)| <r
* |laccessible(p)| < r(d + 1)

eroundr + 1:
* p accesses at most one variable
* |evidence(p)| grows at most by 1

* |accessibleVariables(p)| grows at
most by (d + 1)

accessibleVariables(p)

23

How to keep the graph-based-set small ?

* round r:
* S contains r processes P -
* |accessibleVariables(S)| S 2\‘ s

< r(r+1;(d+1)
*roundr + 1:
* at most one process succeeds to S.head
additsidto S

* the number of processesin S
grows at most by 1

* |accessibleVariables(S)|
grows at most by r(d + 1)

accessibleVariables(p)

accessibleVariables(S)

24

12

12/20/2017

How to keep processes invisible ?
Summary

e round r: Invisible set

- @ ® @

25

How to keep processes invisible ?

Summary
* round r: 2| Invisible set
" » -
*roundr + 1: Z (:p::‘ <
|P | > |PT| ») : :
= 2d + 3 ‘ Sy
and at most 2 processes become D
visible) o
O

26

13

12/20/2017

Summary: the lower bound on the amortized
step complexity of graph-based-set

Any implementation of graph-based-set using only 1-revealing
primitives has an execution

* with ¢ processes
* each performing a single add() operation
* 0(¢?) steps by all processes

= (¢) amortized step complexity of add() operation,

provided ¢ € O(y/loglogn)

27

Summary: the lower bound on the amortized
step complexity of graph-based data structures

The amortized step complexity of any implementation of
* linked lists

* skip lists

* binary search trees

* B-trees

* other data structures based on graph-based-set

using only 1-revealing primitives is Q(¢), provided ¢ € 0(4/loglogn)

28

14

12/20/2017

Thank you very much for your
attention !

15

