Plane Formation by Synchronous Mobile Robots without Chirality

Yusaku Tomita, <u>Yukiko Yamauchi</u>, Shuji Kijima and Masafumi Yamashita

Kyushu University, Japan

Mobile robot system

Mobile robots cooperating by sensing and local computation

3D-space

- Each robot is an anonymous point with
 - Sensing ability
 - Computation ability
 - Movement ability
 - No communication ability and no GPS

Mobile robot system

Mobile robots cooperating by sensing and local computation

- Each robot is an anonymous point with
 - Sensing ability in local coordinate system
 - Computation ability
 - Movement ability
 - No communication ability and no GPS

Self-organization of mobile robots in 2D

Shape formation problems

- Class of formable shapes show computation power of robots
- Effect of <u>each robot's ability</u> has been investigated, such as synchrony, obliviousness, visibility, etc.

Self-organization of mobile robots in 3D

- Plane formation problem (PLF) [Y. et al., JACM 2017]
 - Robots land on a plane without making multiplicity

- Fundamental agreement problem in 3D space
- Reuse of shape formation algorithms for 2D space

Low Symmetry High

13 semi-regular polyhedra

5 regular polyhedra

Symmetricity

- Robots are caught in their symmetricity, i.e.,
 the symmetry of local coordinate systems
 - Symmetricity determines formable shapes
 - 2D space
 [Suzuki and Yamashita, SICOMP1999],
 [Yamashita and Suzuki, TCS2010],
 [Fujinaga et al., SICOMP2015]
 - 3D space [Y. et al., PODC 2016], [Y. et al., JACM 2017]

Existing results consider robots with the same handedness

7

- We consider PLF without chirality
 - Local coordinate system of a robot is
 - ✓ right-handed x-y-z coordinate system, or
 - ✓ left-handed x-y-z coordinate system
- We present
 - Characterization of solvable instances
 - Complete definition of symmetricity in 3D space

Low Symmetry High

13 semi-regular polyhedra

5 regular polyhedra

Contents

- 1. Robot model
- 2. Symmetry without chirality and impossibility
- 3. Plane formation algorithm
- 4. Summary

C

- Anonymous point in 3D-space
- □ Repeats a Look-Compute-Move cycle

Look phase

- Robot observes the positions of other robots in its local coordinate system
 - Left-handed or right-handed x-y-z coordinate system
 - Origin is the current position of the robot
 - Orientations and directions of axes are arbitrary
 - Arbitrary unit distance

Compute phase

- Robot computes its next position by a <u>common algorithm</u>
 - Oblivious algorithm
 - Input is the observation of the current phase
 - Non-oblivious algorithm
 - Input consists of the observation of the current phase, and past observation and computation

Move phase

- Robot moves to the next position
 - Without stopping en route (rigid movement)

Schedule of Look-Compute-Move cycles

Schedule of Look-Compute-Move cycles

Weaker model or stronger model?

- ✓ Impossibility in FSYNC holds for SSYNC and ASYNC
- ✓ Possibility in ASYNC holds for SSYNC and FSYNC

Contents

- 1. Robot model
- 2. Symmetry without chirality and impossibility
- 3. Plane formation algorithm
- 4. Summary

Symmetry with chirality

- Symmetric configuration
- Symmetric local coordinate sys.
- Same observation

Common algorithm outputs symmetric next positions

Robots cannot resolve rotation symmetry of local coordinate systems

[Suzuki and Yamashita, 1999], [Yamashita and Suzuki, 2010], [Fujinaga et al., 2015], [Y. et al., JACM 2017]

Rotation symmetry

- □ Five types of rotation symmetry in 3D-space
 - Recognized by rotation axes and their arrangement
 - Each symmetry type forms a group (rotation group)

PLF with chirality [Y. et al., 2017]

- Initial local coordinate systems with
 - 2D rotation group: PLF is solvable
 - 3D rotation group: PLF is impossible

Symmetry without chirality

Robots without chirality cannot resolve reflection symmetry of local coordinate systems

Reflection symmetry

Multiple mirror planes introduce rotation symmetry

4 mirror planes

3 mutually perpendicular mirror planes

Composite symmetry

- 17 symmetry groups obtained by composition of
 - 5 types of rotation groups
 - Mirror planes
 - Vertical mirror plane(s)
 - Horizontal mirror plane(s)

$$S = \{C_1, C_i, C_s, C_k, C_{kh}, C_{lv}, D_l, D_{lh}, D_{lv}, S_m, T, T_d, T_h, O, O_h, I., I_h \mid k=2,3, ..., I=2,3, ..., m=2,3, ...\}$$

Symmetric local coordinate systems

Rotation symmetry

Reflection symmetry

- Robots cannot resolve empty rotation axes and empty mirrors
- Otherwise, the robots on them can resolve the symmetry by leaving the current position

PLF without chirality

3D rotation symmetry

- Robots are caught in a 3D rotation group
 - Cannot land on a plane

Reflection symmetry

- Robots keep the empty horizontal mirror plane regarding a 2D rotation group
 - Cannot avoid multiplicity

Impossibility result

Definition

Symmetricity $\rho(P)$ of a set P of points is a set of symmetry groups G that acts on P and decomposes P into orbits of size |G|.

Intuitively, $\rho(P)$ is the set of symmetry groups consisting of rotation axes and mirror planes that contain no points of P.

Main Theorem

Irrespective of obliviousness, the FSYNC robots without chirality can form a plane from an initial configuration P if and only if $\rho(P)$ contains neither any <u>3D</u> rotation group nor any <u>2D</u> rotation group with horizontal mirror plane except C_{2h} and S_m .

Contents

- 1. Robot model
- 2. Symmetry without chirality and impossibility
- 3. Plane formation algorithm
- 4. Summary

PLF without chirality (Solution)

Main Theorem

Irrespective of obliviousness, the FSYNC robots without chirality can form a plane from an initial configuration P if and only if $\rho(P)$ contains neither any 3D rotation group nor any 2D rotation group with horizontal mirror plane except C_{2h} and S_m .

Symmetry group

Definition

Symmetry group $\theta(P)$ of a set P of points is the symmetry group that acts on P and no proper supergroup of $\theta(P)$ acts on P.

- \Box $\theta(P)$ is unique
 - □ Irrespective of coordinate system to observe P
 - \blacksquare Robots can agree on $\theta(P)$
- \square By $\theta(P)$, robots can agree on
 - Principal axis for 2D groups
 - Decomposition of P and ordering of the subsets

Our idea

Initial configurations are classified into

 $\theta(P)$ with 2D rotation group $\theta(P)$ with 3D rotation group

- Direct plane formation for 2D rotation group without the horizontal mirror plane
- Plane formation by multiple phases for
 - 2D rotation group with the horizontal mirror plane
 - 3D rotation group

PLF algorithm without chirality

- Our algorithm consists of four phases
 - Removing rotation axes
 - 2. Removing the horizontal mirror plane
 - 3. Agreement on the final plane
 - 4. Landing

Removing rotation axes

Robots on rotation axes leave the current position

Go-to-center algorithm [Y. et al., 2017] Each robot selects an adjacent face, and moves to the center of the face (but stops ϵ before the center)

Property

After the execution of the go-to-center algorithm, the positions of the robots does not keep any 3D rotation group.

Removing the horizontal mirror plane

- Robots on the mirror plane leave current positions
 - Each robot selects upward or downward and move

After the movement, no robots are at the symmetric positions regarding the mirror plane

Agreement and landing

- Robots agree on the plane
 - Perpendicular to the principal rotation axis and
 - Containing the center of their smallest enclosing ball
 - (In an asymmetric case, robots can agree on unique names.)
- Robots move to the nearest point on the plane
 - Multiplicity is avoided by assigning priority among robots

PLF without chirality

Main Theorem

Irrespective of obliviousness, the FSYNC robots without chirality can form a plane from an initial configuration P if and only if $\rho(P)$ contains neither any 3D rotation group nor any 2D rotation group with horizontal mirror plane except C_{2h} and S_m .

Summary

- Complete definition of symmetricity in 3D space
 - 17 symmetry groups obtained by
 - ✓ Rotation symmetry
 - Reflection symmetry
- Plane formation by robots without chirality
 - Impossibility result
 - Distributed algorithm for all solvable instances
 - Extension: SSYNC model with non-rigid movement
 - Technical subtleties are the same as [Uehara et al., SSS 2016]
- Future directions: Effect of other elements
 - Asynchrony, non-rigidity, local visibility, randomness, etc.