_ock Oscillation: Boosting the
Performance of Concurrent Data

Structures
Panagiota Fatourou Nikolaos D. Kallimanis
FORTH ICS & University of Crete FORTH ICS

[3CINoDe

he Multicore Era

»The dominance of Multicore Machines necessitate
the development of efficient parallel software.

» Parallelism may be inefficient due to
synchronization costs of parts that cannot be
parallelized.

low cost.

The cost of Synchronization

Synchronization requests (e.g. accesses to the same shared data) must be
executed in mutual exclusion.

» Best time to execute m such requests = time required by a single thread to execute
them, sequentially, sidestepping the synchronization protocol.

Ideally:

»One thread undertakes the task to execute all m synchronization requests.

»The rest of the threads execute only their local workload.
In practice:

¢ This is never the case: contention effects may have a drastic impact in performance.

The Basics of the Combining
Technique

List of synchronization requests

\ 4

req,

»Combining technique significantly enhances the performance.
»Each thread announces its operation by appending a node in the list.

» A thread attempts to become a combiner and serve, in addition to its own
request, active requests by other threads.

» A thread that wants to perform a synchronization operation:

1. It announces its requests,
2. either try to become the combiner (not always “successfully”)

3. or perform local spinning until the combiner performs their requests.

»The combiner applies, in addition to its operation, other announced operations
before releasing the lock.

Related Work

Combining Synchronization Protocols 50 | —x—ideal
Blocking: CC-5ynch

~
o

»Qyama Algorithm: Oyama, Taura, and
Yonezawa, PDSIA'99.

» Flat-Combining: Hendler, Incze, Shavit, and
Tzafrir, SPAA ‘10.

» CC-Synch: Fatourou and Kallimanis,

98]
[an]

throughput {millions of requests per sec)
(=]
[as]

PPoPP‘12. .
Wait-Free: 0 .
1 8 16 24 32 40 48 56 64
» P-Sim: Fatourou and Kallimanis, SPAA "11. # of cores

Why performance
IS so low

compared to
ideal?

Why performance is so low
compared to ideal?

»For announcing requests:

1. At least one cache line is
invalidated.

» For serving requests:

2. A cache miss is caused to the
combiner for reading a request and its
arguments.

3. Combiner causes at least one cache
line invalidation for waking up each
requesting thread.

0 + . . . ; ; ; ; —
4. Requests are usually not placed on 1 8 16 24 32 40 48 56 64
consecutive addresses — the # of cores

prefetcher does not help.
-_’ req, " req, | 7T red; " req,

w
o

| —%—Ideal
CC-Synch

) w =~
o o o

throughput (millions of requests per sec)
5
1

Is it possible to
further improve
the performance?

Our Contribution |

» Osci enables batching on a single node, the synchronization requests initiated by
multiple threads running on the same core.

» A fat node contains more than one requests and is appended to the list by performing
just a single expensive atomic operation.

1. More requests are announced with less remote cache line invalidations.

2. With a single cache miss, combiner efficiently applies more than one requests.

3. More than one requesting threads wake up with one cache line invalidation.

4. Processor's prefetcher handles the reading of announced requests more efficiently.

v" When OSCI is combined with cheap context switching (i.e. user-level threads) performs
extremely well.
v" It outperforms by far all previous state-of-the-art synchronization algorithms.

Our Contribution |

We discuss PSimX, a simple variant of PSim with highly upgraded performance.
» It ensures wait-freedom.

» Its performance is much closer to the ideal than that of PSim.
» Based on PSimX, it is straightforward to implement useful complex primitives
(e.g. CAS on multiple words, etc.) in a wait-free manner, at a very low cost.

We built concurrent queues based on OSCI and PSimX which outperform all
state-of-the-art concurrent queue implementations.

We built concurrent stacks based on OSCI and PSimX which outperform all
state-of-the-art concurrent stack implementations.

'he OSCI Synchronization
‘echnique — General ldea

Tail

/

next T

—>

next -~ , NULL

door

<request, ret,
completed, locked>

<request, ret,
completed, locked>

<request, ret,
completed, locked>

Kthreads @ coreX)

Fnd

The OSCI Synchronization
Technigue — Requesters’ side

'he OSCI Synchronization
‘echnique — Combiner’s side

Tail

/

next T

door

<request, ret,
completed, locked>

<request, ret,
completed, locked>

<request, ret,
completed, locked>

(threads @ coreX)

Fnd

Performance Evaluation |

50 1 e|deal —#—0sci-x32

—e—PSim-x64 —<CC-Synch

» Osci outperforms CC-Synch by a factor
of up to 11.

40 - —e—flat-combining

w
o
1

»The performance advantages of Osci
over all other algorithms are even higher.

throughput (millions ops/sec)

» PSimX outperforms all algorithms
other than Osci.

1 8 16 24 32 40 48 56 64
of cores (AMD Opteron)

Performance Evaluation Il

50 4
Concurrent Queues based on Osci and PSimX outperform: ——Ideal

* LCRQ (Morrison & Afek ‘13) | 7 Declueuent
CC-Queue (Fatourou & Kallimanis ‘12)
SimQueue (Fatourou & Kallimanis ‘11)
MS-Queue (Michael & Scott 96)

Two-locks queue (Michael & Scott ‘96)

N
o

ps/sec)

——SimQueue-x64

[J
Ons o

w

o

1 —o—LCRQ

——CC-Queue

ghpl'{tJ (milli
o

°

throu,
=
o

e 3

o
I

1 8 16 24 32 40 48 56 64
of cores [AMD Obteron)

Concurrent Stacks based on Osci and PSimX outperform: *°]
* CC-Stack (Fatourou & Kallimanis ‘12)
* SimStack (Fatourou & Kallimanis ‘11)
e CLH-Stack
* Lock-Free stack (Treiber ‘86)

—*—|deal

B
o

—»—QOsciStack-x64

w
(=]

| —#—SimStack-x64

N
o

1 —<CC-Stack

throughput (millions ops/sec)

[
o
1

o
I

1 8 16 24 32 40 48 56 64
of cores (AMD Opteron)

Performance Ana\ysis

——PSim-x64 —e—PSim
(all levels) backend stalls | degree 2 40 | S CCSynche e flat-combining-x2
X4 ——H-Synch-x32
Osci-x64 0.20 1404 Z e
€30 -
Psim-x64 0.24 2306 1307 z
H-Synch-x32 0.47 666 32 2°°7
3
CC-Synch 0.47 4210 1079 £10 -
PSim 0.4 14300 22 0 -

1 8 1I6 2I4 3I2 4IO 4I8 5I6 6I4
of cores (AMD Opteron)
» Osci spends the lowest amount of cache misses per operation.
»The cpu cycles spent in backend stalls per operation are the lowest.
» Osci achieves the highest combining degree.

»PSimX also spends a low amount of cache misses per operation and achieves high
combining degree.

Thank You

