
Lock Oscillation: Boosting the
Performance of Concurrent Data
Structures

Panagiota Fatourou
FORTH ICS & University of Crete

Nikolaos D. Kallimanis
FORTH ICS

The Multicore Era

The dominance of Multicore Machines necessitates
the development of efficient parallel software.

Parallelism may be inefficient due to
synchronization costs of parts that cannot be
parallelized.

Need for efficient synchronization mechanisms with
low cost.

P. Fatourou & N. D. Kallimanis

The cost of Synchronization

Synchronization requests (e.g. accesses to the same shared data) must be
executed in mutual exclusion.

Best time to execute m such requests ≥ time required by a single thread to execute
them, sequentially, sidestepping the synchronization protocol.

Ideally:

One thread undertakes the task to execute all m synchronization requests.

The rest of the threads execute only their local workload.

In practice:

This is never the case: contention effects may have a drastic impact in performance.

P. Fatourou & N. D. Kallimanis

req1
req2 req3 req4

List of synchronization requests

The Basics of the Combining
Technique

Combining technique significantly enhances the performance.

Each thread announces its operation by appending a node in the list.

A thread attempts to become a combiner and serve, in addition to its own
request, active requests by other threads.

A thread that wants to perform a synchronization operation:
1. It announces its requests,
2. either try to become the combiner (not always “successfully”)

3. or perform local spinning until the combiner performs their requests.

The combiner applies, in addition to its operation, other announced operations
before releasing the lock.

P. Fatourou & N. D. Kallimanis

Tail

Related Work
Combining Synchronization Protocols

Blocking:

Oyama Algorithm: Oyama, Taura, and
Yonezawa, PDSIA'99.
Flat-Combining: Hendler, Incze, Shavit, and
Tzafrir, SPAA ‘10.
CC-Synch: Fatourou and Kallimanis,
PPoPP‘12.

Wait-Free:

P-Sim: Fatourou and Kallimanis, SPAA ’11.

P. Fatourou & N. D. Kallimanis

Other synchronization protocols have lower or similar performance as CC-Synch.

Why performance
is so low

compared to
ideal?

P. Fatourou & N. D. Kallimanis

Why performance is so low
compared to ideal?
For announcing requests:

1. At least one cache line is
invalidated.

For serving requests:
2. A cache miss is caused to the
combiner for reading a request and its
arguments.

3. Combiner causes at least one cache
line invalidation for waking up each
requesting thread.

4. Requests are usually not placed on
consecutive addresses → the
prefetcher does not help.

P. Fatourou & N. D. Kallimanis

req1 req2 req3 req4

List of synchronization requests

Is it possible to
further improve

the performance?

P. Fatourou & N. D. Kallimanis

Our Contribution I
Osci enables batching on a single node, the synchronization requests initiated by

multiple threads running on the same core.

A fat node contains more than one requests and is appended to the list by performing

just a single expensive atomic operation.

1. More requests are announced with less remote cache line invalidations.

2. With a single cache miss, combiner efficiently applies more than one requests.

3. More than one requesting threads wake up with one cache line invalidation.

4. Processor's prefetcher handles the reading of announced requests more efficiently.

 When OSCI is combined with cheap context switching (i.e. user-level threads) performs

extremely well.

 It outperforms by far all previous state-of-the-art synchronization algorithms.

P. Fatourou & N. D. Kallimanis

Our Contribution II
We discuss PSimX, a simple variant of PSim with highly upgraded performance.

 It ensures wait-freedom.

 Its performance is much closer to the ideal than that of PSim.

 Based on PSimX, it is straightforward to implement useful complex primitives

(e.g. CAS on multiple words, etc.) in a wait-free manner, at a very low cost.

We built concurrent queues based on OSCI and PSimX which outperform all

state-of-the-art concurrent queue implementations.

We built concurrent stacks based on OSCI and PSimX which outperform all

state-of-the-art concurrent stack implementations.

The OSCI Synchronization
Technique – General Idea

P. Fatourou & N. D. Kallimanis

next

door

<request, ret,
completed, locked>

<request, ret,
completed, locked>

<request, ret,
completed, locked>

…

next

door

<request, ret,
completed, locked>

<request, ret,
completed, locked>

<request, ret,
completed, locked>

…

next

door

<request, ret,
completed, locked>

<request, ret,
completed, locked>

<request, ret,
completed, locked>

…

Tail

threads @ coreX threads @ coreY

𝑁𝑈𝐿𝐿

threads @ coreZ

Osci maintains:
 a linked list of nodes that store synchronization requests
 the shared variables implementing the simulated state

 Each node of the list contains the requests announced by
multiple active threads running on the same single core.
This “fat” node is appended in the list by performing a
single expensive synchronization primitive (i.e. SWAP).
 One of the threads that have announced requests in the
head node of the list plays the role of the combiner.

The OSCI Synchronization
Technique – Requesters’ side

P. Fatourou & N. D. Kallimanis

next

door =

<request, ret,
completed, locked>

<request, ret,
completed, locked>

<request, ret,
completed, locked>

…

threads @ coreX

 Each thread initially allocates two nodes.
 The first thread (or director) among those running on the same
core, that wants to apply a request, successfully installs (i.e.
successful CAS) a node to 𝐴𝑛𝑛𝑜𝑢𝑛𝑐𝑒.
 After director has recorded its request:
 door: LOCKED → OPEN
 calls 𝑌𝑖𝑒𝑙𝑑 to allow other threads running on the same core

 All other threads on the same core:
1. run their computation,
2. eventually announce their requests, and
3. call Y𝑖𝑒𝑙𝑑.

Whenever the director is rescheduled:
 door: OPEN → CLOSED
Announces the node to the list of requests.
 Director is the only thread that can later the role of combiner.

Announce

LOCKEDOPENCLOSED

The OSCI Synchronization
Technique – Combiner’s side

P. Fatourou & N. D. Kallimanis

next

door

<request, ret,
completed, locked>

<request, ret,
completed, locked>

<request, ret,
completed, locked>

…

next

door

<request, ret,
completed, locked>

<request, ret,
completed, locked>

<request, ret,
completed, locked>

…

next

door

<request, ret,
completed, locked>

<request, ret,
completed, locked>

<request, ret,
completed, locked>

…

Tail

threads @ coreX threads @ coreY

𝑁𝑈𝐿𝐿

threads @ coreZ

 A combiner serves the requests of the list.

 After applying a request of some thread, it unlocks

the thread by setting 〈𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 = 𝑡𝑟𝑢𝑒, 𝑙𝑜𝑐𝑘𝑒𝑑 = 𝑓𝑎𝑙𝑠𝑒〉.

Whenever, the combiner thread gives up its role

identifies the director from the next node (if any) to be

the new combiner.

 If the list is non-empty, then there is exactly one

combiner. If the list is empty, then no combiner exists.

Performance Evaluation I

P. Fatourou & N. D. Kallimanis

Osci outperforms CC-Synch by a factor
of up to 11.

The performance advantages of Osci
over all other algorithms are even higher.

 PSimX outperforms all algorithms
other than Osci.

Performance Evaluation II
Concurrent Queues based on Osci and PSimX outperform:

• LCRQ (Morrison & Afek ‘13)

• CC-Queue (Fatourou & Kallimanis ‘12)

• SimQueue (Fatourou & Kallimanis ‘11)

• MS-Queue (Michael & Scott ‘96)

• Two-locks queue (Michael & Scott ‘96)

Concurrent Stacks based on Osci and PSimX outperform:

• CC-Stack (Fatourou & Kallimanis ‘12)

• SimStack (Fatourou & Kallimanis ‘11)

• CLH-Stack

• Lock-Free stack (Treiber ‘86)

Performance Analysis
Algorithm cache misses

(all levels)
cycles spent in
backend stalls

combining
degree

Osci-x64 0.20 247 1404

Psim-x64 0.24 2306 1307

H-Synch-x32 0.47 666 32

CC-Synch 0.47 4210 1079

PSim 0.4 14300 22

P. Fatourou & N. D. Kallimanis

Osci spends the lowest amount of cache misses per operation.

The cpu cycles spent in backend stalls per operation are the lowest.

Osci achieves the highest combining degree.

PSimX also spends a low amount of cache misses per operation and achieves high
combining degree.

Thank You

P. Fatourou & N. D. Kallimanis

