Extending Transactional Memory with
Atomic Deferral

Tingzhe Zhou”, Victor Luchangco®, and Michael Spear”

“Lehigh University
*Oracle Labs

12/20/17 Tingzhe Zhou: Extending Transactional Memory with Atomic Deferral| OPODIS'17

Transactional Memory Overview (1)

* Lock
— Forget to take a lock (data race)
— Take lock with wrong order (dead-lock)

— Code re-use problems (composability)
— Fine-grained locks (difficulty)

 Transaction

— Atomicity i vord -
— Serializability pupic v> {GF‘Q(x) {
Qnode q = new Qnode(x);
tail.next = q;
tail = q;
}
}

12/20/17 Tingzhe Zhou: Extending Transactional Memory with Atomic Deferral| OPODIS'17

Transactional Memory Overview (2)

« Software Transactional Memory (STM)
— instrumentation overhead

— flexible
1 __transaction_atomic { TxBegin ();
2 val = TxRead (&counter);
3 counter-++; —=> val++;
4 TxWrite (&counter, val);
5 } TxCommit () ;

« Hardware Transactional Memory (HTM)

— faster
— no progress guarantee

Buffering L1 cache (32KB + 32 KB)

Conflict detection Cache coherence protocol
Abort/Recovery Invalidate transactional cache line
Commit Validate transactional cache line

12/20/17 Tingzhe Zhou: Extending Transactional Memory with Atomic Deferral| OPODIS'17

Transactional Memory Overview (3)

Time
T1 T2 T3 T1 T2 T3
Lock() TxBegin() TxBegin() TxBegin()
CS CS CS CS
Release() TxEnd() | TxEnd() | TxEnd()
Lock()
= Conflict
NO YES
Release(TE Commtd
LOCk() T3. Commit()
CS
Release()

12/20/17 Tingzhe Zhou: Extending Transactional Memory with Atomic Deferral| OPODIS'17

Obstacles for Using TM

* lrrevocable operations
- 1/O
— some system calls

* Long-running operations

— longer execution time
* more likely to conflict

— more memory access
« STM: conflict, instrumentation overhead
« HTM: capacity limitation

— delay other transactions
 conflicting transactions
« all concurrent transactions (new finding)

12/20/17 Tingzhe Zhou: Extending Transactional Memory with Atomic Deferral| OPODIS'17

Atomic Deferral

* Via 2PL, the suffix of the transaction remains atomic with
the transaction, even though it is not run as a transaction

— Differs from previous approaches to deferral: arbitrary and
complex code allowed in the suffix

 Original motivation: defer an output operation and its
error handling code

— Consider writes to an unreliable socket: not just a syscall!
— Or ensure the £fsync happens at the right time

« Additional motivation: improve program performance
— Exclusive use of transactions = correct

— Addition of locks to protect certain data - avoid transaction
overheads, remain correct

12/20/17 Tingzhe Zhou: Extending Transactional Memory with Atomic Deferral| OPODIS'17

Before Atomic Deferral

* lIrrevocable Transactions
— Simplicity (Programmability, Implementation)
— Limit concurrency

» Deferred Operations
— Does not constrain concurrency
— Some output operations can be deferred

— Data copy
— Ignore the return value

12/20/17 Tingzhe Zhou: Extending Transactional Memory with Atomic Deferral| OPODIS'17

Privatization Problem

[Zhou, ICPP’17]

T1 T2 [Khyzha, PPoPP’18]
__transaction_atomic { __transaction_atomic{
node = L->head i_node = locate(L, i)
L->head = null if (i_node != null)
} i_node->data = process(i_node)
}
/[Lis privatized
process(node)
tart the transactior privatize
Non-Tx
(privatize L) \ (use L)
T1 LN o e———
1S
VN
T2 s .&\
/‘ (mtrst\ abory data race
speculative execution
Time]

12/20/17 Tingzhe Zhou: Extending Transactional Memory with Atomic Deferral| OPODIS'17 8

Quiescence in C++ TMTS

T1 T2
__transaction_atomic { __transaction_atomic{
node = L->head i_node = locate(L, i)
L->head = null if (i_node != null)
} i_node->data = process(i_node)
/[Lis privatized
process(node)
tion
<tart the transact privatize
Non-Tx
(privatize L) \ wait | (use L)
T1 LN e,
[BRNAY
V)
T2 \ \\‘ (use L) :
/ (mu'st abbort) :
Ny
speculative execution
Time
12/20/17 Tingzhe Zhou: Extending Transactional Memory with Atomic Deferral| OPODIS'17

' A Motivating Example

Transaction_ , — . — . = . — . - _ TS
| A. B C C I’""(E]EJ.I_GIS.E).G."‘ . .
T, .| USEA, b, use ' Long-running operations
Transaction_ . . — . . "
CM .
L2 D = e
Transaction _ ,
T3 : use D RYTTITL 9.L.||.e"S.C.e. *
L R — J
Time
e e e et em e e mm e mm e em s em t mm e mm s ek mm s s et mm s e s e s mm s s mm f mm s s =k = s s =t = s e s mm % mm s s mm t mm 4 s mm s mm s e s =t = 4 s = s mm e mm e em t mm s = s = s mm e s = f = 4 s = h = s e s et o= s e s ke >
Transaction. ., — . — . _
. esce
T1 I useA’ B, C !------q-l:l-l -------- P use C
Transaction _
. | oM (yseB | 1 (Lc] (ReJ (Csc]
2 == - transactional friendly locks
Transaction _ .
1 quiesce
T3 . use D @rnsnnnnnnns
L J

. Trans==tion. . - Transaction: -
[Retry [
T, ;. use C l

12/20/17 Tingzhe Zhou: Extending Transactional Memory with Atomic Deferral| OPODIS'17 10

Implementing Locks with TM

* Implement the lock as a bool

— To acquire: set the bool from false to true via a transaction, or
retry [Harris PPoPP 2005]

— To release: set the bool from true to false via a transaction
— To elide: read the bool: if true then retry

* Properties:

— Locks can be acquired and released inside or outside of
transactions
— The use of retry ensures threads yield the CPU when the lock

Is held

12/20/17 Tingzhe Zhou: Extending Transactional Memory with Atomic Deferral| OPODIS'17

11

Using Locks and Transactions Together

« Seems like a strange proposition...
— Transactions are heralded as a replacement for locks
— TM s simpler to use

— TM scales better when the lock granularity is hard to determine,
but conflicts are rare

 But TM s not a silver bullet
— Can't do irrevocable operations (e.g., I/0O) without serialization

— Hardware TM capacity constraints may result in serialization
— TM suffers worse from false conflicts

12/20/17 Tingzhe Zhou: Extending Transactional Memory with Atomic Deferral| OPODIS'17

12

Lock-Based Semantics

12/20/17

In lock-based programming, serializability is one of the
most appealing correctness properties

— The execution history is equivalent to one in which critical
sections are executed without overlapping in time

Serializability is trivial when there is only one lock

— TM in C++ is serializable... “as if” one lock protects all
transactions

Serializability is guaranteed when the program obeys

two-phase locking

— An operation executes in two distinct phases: one in which locks
are acquired, and one in which they are released

Tingzhe Zhou: Extending Transactional Memory with Atomic Deferral| OPODIS'17 13

Two-Phase Locking (2PL)

« Each of the following is legal in 2PL

Time

A.release

B.release

C.release

D.release

E.release

F.release

G.release

G.acquire

F.acquire

E.acquire

D.acquire

C.acquire

B.acquire

G.release

F.release
E.release

D.release

C.release

B.release

A.release

G.acquire

F.acquire

E.acquire

D.acquire

C.acquire

B.acquire

F.release

D.release

E.release

G.release

B.release

A.release

C.release

Phase Boundary

E.acquire

G.acquire

C.acquire

D.acquire

F.acquire

* Recall: serializability ensures correctness, but not

progress!

14

Tingzhe Zhou: Extending Transactional Memory with Atomic Deferral| OPODIS 17

12/20117

2PL With Transactions?

Time
> o > oy
Q) = =
% (@) @ @
o) o] @)
c c. Q A
E. = » 7]
(0] () (0] (0]
= :
1
1 [9y 1 w
X D < B 3
1 o (9] I @
| B3 ® S W @
1 1

Seems OK ©

12/20/17 Tingzhe Zhou: Extending Transactional Memory with Atomic Deferral| OPODIS 17

15

What if Locks Implemented via Transactions?

Time >
T T | —
’ -} | ¥
N — | !
1 = 13 ¥ < K 1 [
: % : : T 1 1 :
Iy © I 1) 1 I]
1 Sy 1 1 o : :]
1 1 1] ' |

1
\ Acqui 7 \ Release -\ Rel \ Release
cquire : elease
Acquire Acquire

« Standard argument does not work

— Each transaction is equivalent to acquiring and releasing some
lock

« Claim (without proof): transactions for implementing
locks don’t affect reasoning about 2PL

12/20/17 Tingzhe Zhou: Extending Transactional Memory with Atomic Deferral| OPODIS'17 16

Programmability

* Two new keywords

— Deferrable annotation on classes
— atomic_defer function

classio_obj

{

input_stream;
output_stream;

io_obj S =new io_obj[N];

A—() { S[il.out(); }

synchronized {

12/20/17

Tingzhe Zhou:

classio_objpublic Deferrable

{

input_stream;
output_stream;
io_obj S =new io_obj[N];

A—() { S[i].out(); }

atomic {

A < () { o.expensive() }
atomic_defer(A,o)

Extending Transactional Memory with Atomic Deferral| OPODIS*17

What's behind the scene?

atomic {

atomic_defer(A, S[i]); »

S[i].TxLock.Aquire();

...... 4« \
) A N
AY
\
: \\
. Deferrable objects \
functions 01,02,03 \\
\
\
N

deferred_ops. append(A, S[i])

atomic {
if .owner = nil then
l.owner < me
l.depth < 1
return
else if .owner=me then
|.depth <« l.depth + 1
return A
retry ’-

}

reentrantlock

. - / STM Commit; HTM uses a special instruction
TxCommit()) o)
ValidateReadsFinalize Writes()

. _ \ // STM-only
function TxLock. Subscribe () \ Qui

// Must be in transaction to call ‘\ uiesce())

if owner # nil A\ owner # me then \ // Execute deferred operations

|_ retry \ for (A, objs)in deferred_opsdo
\ A.execute()
‘\‘ for o in objsdo o.TxLock.Release();
\

12/20/17

Tingzhe Zhou: Extending Transactional Memory with Atomic Deferral| OPODIS'17

18

High-level Execution

Begin Transaction

\ ‘Conflict

contention management validation

Execute Transaction

Failed 1 Succeed
Validation
(Write Back)
! Succeed
End Transaction
12/20/17

Tingzhe Zhou: Extending Transactional Memory with Atomic Deferral| OPODIS'17

.
.
.
.t

.
.
.
.
.s

L]
L]
L]
a
a
a
.....
L
L]
L]
L]
L]
a
L]

.
.s
.t
.

Acquiring TxLocks

append A to
instruction list

.......

Executing
Deferred functions

Releasing
TxLocks

Practical Concerns

 Programmer may violate two phase locking

— Wrapping transactions in deferred operation

— Accessing objects without subscribe the corresponding
Txlocks.

12/20/17 Tingzhe Zhou: Extending Transactional Memory with Atomic Deferral| OPODIS'17

20

Example #1: Output Operations

« System calls (e.g., writing to a file) cannot be done
speculatively = must run transaction in isolation
— With atomic deferral, system call is not in the transaction

Write buffer

. to file, wS
Prepare Output Buffer m handle =1
- errors o

 (Concurrent accesses to buffer from within transactions
must use the elide () instruction on the buffer’s lock to

respect mutual exclusion if lock is held

 Concurrent accesses to buffer from outside transactions
must acquire the buffer’s lock

12/20/17 Tingzhe Zhou: Extending Transactional Memory with Atomic Deferral| OPODIS'17 21

Example #2: Long-Running Operations

« Long-running, pure functions lead to slowdown
— Instrumentation overhead in software TM
— Capacity constraints in hardware TM

« Example: (de)compression in PARSEC dedup

— Given a byte stream, produce a new byte stream

Mark buffer object

mwC
c 2
=35)
as (de)compressed Lol

|
i (de)compress
: the buffer

— Other users of byte stream must use the buffer lock’s elide
operation before checking if buffer (de)compressed

12/20/17 Tingzhe Zhou: Extending Transactional Memory with Atomic Deferral| OPODIS'17

22

' Experiment

* 4-core/8-thread Intel Core i7-4770 CPU running
at 3.40GHz.

e Code

Listing 6: An example of deferring I/O and system calls

// Encapsulate streams in a Deferrable // Operation to be deferred // Irrevocable version of benchmark
object 1 X <—(id, content) 1 synchronized
class defer_file: public Deferrable // Read File 2 content < ...
imput // input stream 2 if —df s[id].input.open() then 3 id <+ ...
output // output stream error 4 A(id, content)
// Get the length of the file
// An array of files 3 df s[id].input.seekg(0, end) . -
df s: de fer_file[] 4 len + df s[id].input.tellg() . th;olﬁw—def er version of benchmark
5 df s[id].input.close()) content <«
// Write to the file and close : id o
¢ tmp'<— format(cqntent, len) 4 atomic_defer(A(id, content),
df s[id].output.write(tmp) df s[id])
| dfs[id].output.close()

12/20/17 Tingzhe Zhou: Extending Transactional Memory with Atomic Deferral| OPODIS'17 23

atomic_defer performance (1 file descriptor)

No concurrency

"cal =
6 Lirrevoc —e— S
. defer —* "
5 ‘
=
= 4t
-
)
O .
o) Retry is not supported
irevocable Tx is carefully.. ha 2 1 by ch+ TS PP
optimized in GCC TM it]

1 2 3 4 5 6 7 8
Number of Threads

Latency: Lambda, Instrumentation... ...

12/20/17 Tingzhe Zhou: Extending Transactional Memory with Atomic Deferral| OPODIS'17 24

atomic_defer performance (2, 4)

Execution time(s)

12/20/17

“GLand lmevee

CGL —=—
irrevoc —e—

defer — N 1
FGL ——

Number of Threads

Latency: Lambda, Instrumentation

.""E.)g.ecution time(s)

5

CGL™ &
irrevoc —e6—
defer —

FGL .

.\‘1 |

Tingzhe Zhou: Extending Transactional Memory with Atomic Deferral| OPODIS'17

¥
t 2 3 4 5 6 7 8
Number of Threads
Atomic_defer scales !!!

25

atomic_defer performance (4, small)

Irrevocable transaction shows
its overhead, it performs ever
worse than CGL

CGL
1.8 I irrevoc —o—
1.6 - defer —*
14+ FGL

1.2 F

0.8 @ . S—]
0.6 +
0.4 +
0.2 +

Execution time(s)

1 2 3 4 5 6 7 8
Number of Threads

12/20/17 Tingzhe Zhou: Extending Transactional Memory with Atomic Deferral| OPODIS'17 26

Parsec Dedup Kernel

35
30 r

[}
@
°§’ 25
5 20
=
(&)
(O]
X
L
12/20/17

18-core/36-thread Intel E5-2699 V3 CPUs

running at 2.30GHz.

15 ¢
10 ¢

STM = STM+DeferAll =
HTM = HTM+DeferAll + 1

S¥M+Begerlg e Pthread *
+DeferlO o]
i i;k s
k\ P a—" —
—_—
2 4 6 8

Number of Threads

90

80 |
70

Execution time(s)

HTM-Best —m—
STM-Best & 1

Pthread —x— |
STM

8

12 16 20 24 28 32
Number of Threads

Tingzhe Zhou: Extending Transactional Memory with Atomic Deferral| OPODIS'17 27

Conclusions

* Non-atomic /O deferral isn't enough

— Network I/O is more than a syscall... Need to handle errors
atomically!

* Locking can be an optimization for transactional
programs
— Avoid copying
— Calls to elide() can be handled by compiler

* Next step: more workloads
— Focus thus far: output stage of pipeline parallelism

— Other opportunities: management of open file descriptors in
MySQL, logging operations in cloud applications, asynchronous
file output, ...

12/20/17 Tingzhe Zhou: Extending Transactional Memory with Atomic Deferral| OPODIS'17 28

Q&A

* Thank you!

« Contact Info:
— Tingzhe Zhou: tiz214@Iehigh.edu

12/20/17

Tingzhe Zhou: Extending Transactional Memory with Atomic Deferral| OPODIS'17

29

