Lower Bounds for Subgraph Detection in the CONGEST Model

TZLIL GONEN

JOINT WORK WITH ROTEM OSHMAN

Tel Aviv University

Introduction: Subgraph Freeness

Introduction: Subgraph Freeness

Input:

1. Network graph G
2. Fixed graph H

Output: does G contain H as a subgraph?

Introduction: Subgraph Freeness

Input:

1. Network graph G
2. Fixed graph H

Output: does G contain H as a subgraph?

Introduction: Subgraph Freeness

Input:

1. Network graph G
2. Fixed graph H

Output: does G contain H as a subgraph?
 Model: CONGEST

What We Know So Far...

What We Know So Far...

- Lower bounds for cycles

What We Know So Far...

- Lower bounds for cycles
- Even cycles: $\widetilde{\Omega}(\sqrt{n})$ rounds [Korhonen, Rybicki '17]
- Odd cycles: $\widetilde{\Omega}(n)$ rounds [Drucker, Kuhn, Oshman '14]

What We Know So Far...

- Lower bounds for cycles
- Even cycles: $\widetilde{\Omega}(\sqrt{n})$ rounds [Korhonen, Rybicki '17]
- Odd cycles: $\widetilde{\Omega}(n)$ rounds [Drucker, Kuhn, Oshman '14]
- Trees require $\Theta(1)$ rounds [Fraigniaud, Montealegre, Olivetti, Rapaport, Todinca 17'] and [Fischer, Gonen, Oshman '17]

What We Know So Far...

- Lower bounds for cycles
- Even cycles: $\widetilde{\Omega}(\sqrt{n})$ rounds [Korhonen, Rybicki '17]
- Odd cycles: $\widetilde{\Omega}(n)$ rounds [Drucker, Kuhn, Oshman '14]
- Trees require $\Theta(1)$ rounds [Fraigniaud, Montealegre, Olivetti, Rapaport, Todinca 17'] and [Fischer, Gonen, Oshman '17]
- Some graphs of size k require $\widetilde{\Omega}\left(n^{2-1 / k}\right)$ rounds [Fischer, Gonen, Oshman '17]

What We Know So Far...

- Lower bounds for cycles
- Even cycles: $\widetilde{\Omega}(\sqrt{n})$ rounds [Korhonen, Rybicki '17]
- Odd cycles: $\widetilde{\Omega}(n)$ rounds [Drucker, Kuhn, Oshman '14]
- Trees require Θ (1) rounds [Fraigniaud, Montealegre, Olivetti, Rapaport, Todinca 17’] and [Fischer, Gonen, Oshman '17]
- Some graphs of size k require $\widetilde{\Omega}\left(n^{2-1 / k}\right)$ rounds [Fischer, Gonen, Oshman '17]
- Our question: what else?

Reduction \#1: Vertex Replacement

Reduction \#1: Vertex Replacement

- Take any 2-connected graph for which a lower bound is known...

Reduction \#1: Vertex Replacement

- Take any 2-connected graph for which a lower bound is known...
- Like this graph:

$\widetilde{\Omega}(n)$ rounds
[Drucker, Kuhn, Oshman '14]

Reduction \#1: Vertex Replacement

- Take any 2-connected graph for which a lower bound is known...
- ... or this graph:

$\widetilde{\Omega}(\sqrt{n})$ rounds
[Korhonen, Rybicki '17]

Reduction \#1: Vertex Replacement

- Take any 2-connected graph for which a lower bound is known...
- ... or even this graph:

$\widetilde{\Omega}\left(n^{2-1 / k}\right)$ rounds for size $\Theta(k)$ graph [Fischer, Gonen, Oshman '17]

Reduction \#1: Vertex Replacement

- Take any 2-connected graph for which a lower bound is known...
- Attach arbitrary connected graph to each vertex...

Reduction \#1: Vertex Replacement

- Take any 2-connected graph for which a lower bound is known...
- Attach arbitrary connected graph to each vertex...
- Obtain nearly the same lower bound

$\widetilde{\Omega}(n)$ rounds

$\widetilde{\Omega}(n)$ rounds

Corollary from Reduction \#1

Corollary from Reduction \#1

- Consider any connected graph H

Corollary from Reduction \#1

- Consider any connected graph H
- Decompose H into a tree of 2-connected components C_{1}, \ldots, C_{k}

Corollary from Reduction \#1

- Consider any connected graph H
- Decompose H into a tree of 2-connected components C_{1}, \ldots, C_{k}
- Hardness of H-freeness $\geq r_{i}$ h(ardness of $\left.\in r e e n e s s\right)$

Reduction \#2: Edge Replacement

Reduction \#2: Edge Replacement

- Take a 4-cycle (or larger cycle)
- Replace each edge by an arbitrary graph s.t. the result is 2 connected

Reduction \#2: Edge Replacement

- Take a 4-cycle (or larger cycle)
- Replace each edge by an arbitrary graph s.t. the result is 2 connected
- Like this graph:

Reduction \#2: Edge Replacement

- Take a 4-cycle (or larger cycle)
- Replace each edge by an arbitrary graph s.t. the result is 2 connected
- ... or this graph:

Reduction \#2: Edge Replacement

- Take a 4-cycle (or larger cycle)
- Replace each edge by an arbitrary graph s.t. the result is 2 connected
- ... or even this graph:

Reduction \#2: Edge Replacement

- Take a 4-cycle (or larger cycle)
- Replace each edge by an arbitrary graph s.t. the result is 2 connected
- Obtain lower bound of $\Omega\left(n^{\delta}\right)$ rounds
- $\delta \in(0,1 / 2]$ depends on $|H|$

This Talk:

- Vertex replacement reduction:

This Talk:

- Vertex replacement reduction:
- The reduction
- Proof outline

This Talk:

- Vertex replacement reduction:
- The reduction
- Proof outline
- Outline of edge replacement reduction

This Talk:

- Vertex replacement reduction:
- The reduction
- Proof outline
- Outline of edge replacement reduction
- ... the rest is in the paper

Vertex Replacement Reduction

Vertex Replacement Reduction

- Notation:

H. Graph we know a lower bound for
$\widetilde{H}: \quad \begin{aligned} & \text { Graph we want a lower } \\ & \text { bound for }\end{aligned}$

Vertex Replacement Reduction

- Fix an algorithm \tilde{A} for testing \widetilde{H}-freeness

Vertex Replacement Reduction

- Fix an algorithm \tilde{A} for testing \widetilde{H}-freeness
- Construction for testing H-freeness:

Vertex Replacement Reduction

- Fix an algorithm \tilde{A} for testing \widetilde{H}-freeness
- Construction for testing H-freeness:

1. Each $v \in V$ chooses a "role in H ", $c(v)$, and "imagines" it is connected to $H_{c(v)}$

Vertex Replacement Reduction

- Fix an algorithm \tilde{A} for testing \widetilde{H}-freeness
- Construction for testing H-freeness:

1. Each $v \in V$ chooses a "role in H ", $c(v)$, and "imagines" it is connected to $H_{c(v)}$
2. Simulate \tilde{A} on resulting network (real + imaginary)

Vertex Replacement Reduction

- Fix an algorithm \tilde{A} for testing \widetilde{H}-freeness
- Construction for testing H-freeness:

1. Each $v \in V$ chooses a "role in H ", $c(v)$, and "imagines" it is connected to $H_{c(v)}$
2. Simulate \tilde{A} on resulting network (real + imaginary)

- How to choose a role?

Vertex Replacement Reduction

- Fix an algorithm \tilde{A} for testing \widetilde{H}-freeness
- Construction for testing H-freeness:

1. Each $v \in V$ chooses a "role in H ", $c(v)$, and "imagines" it is connected to $H_{c(v)}$
2. Simulate \tilde{A} on resulting network (real + imaginary)

- How to choose a role? Randomly...

\widetilde{H}

The Real + Imaginary Graph

Vertex Replacement Reduction

- Let $k=|V(H)|$

Vertex Replacement Reduction

- Let $k=|V(H)|$
- Let \tilde{G} be the real + imaginary network graph

Vertex Replacement Reduction

- Let $k=|V(H)|$
- Let \tilde{G} be the real + imaginary network graph
- Claim:

1. If G contains H, then \tilde{G} contains \widetilde{H} w.p. $\geq 1 / k^{k}$

Vertex Replacement Reduction

- Let $k=|V(H)|$
- Let \tilde{G} be the real + imaginary network graph
- Claim:

1. If G contains H, then \tilde{G} contains \widetilde{H} w.p. $\geq 1 / \tilde{K}^{\pi}$

Vertex Replacement Reduction

- Let $k=|V(H)|$
- Let \tilde{G} be the real + imaginary network graph
- Claim:

$$
\text { So } \tilde{A} \text { must reject }
$$

1. If G contains H, then \tilde{G} contains \widetilde{H} w.p. $\geq 1 / \bar{k}^{\pi}$...with high probability
2. If G does not contain H, then \tilde{G} never contains \widetilde{H}

Vertex Replacement Reduction

- Let $k=|V(H)|$
- Let \tilde{G} be the real + imaginary network graph
- Claim:

$$
\text { So } \tilde{A} \text { must reject }
$$

1. If G contains H, then \tilde{G} contains \widetilde{H} w.p. $\geq 1 / \bar{k}^{\pi}$
2. If G does not contain H, then \tilde{G} never contains \widetilde{H}

Vertex Replacement Reduction

- Let $k=|V(H)|$
- Let \tilde{G} be the real + imaginary network graph
- Claim:

$$
\text { So } \tilde{A} \text { must reject }
$$

1. If G contains H, then \tilde{G} contains \widetilde{H} w.p. $\geq 1 / \bar{k}^{\pi}$
2. If G does not contain H, then \tilde{G} never contains \widetilde{H}

- Reduction can be derandomized
- Additional O (lo gn) factor

So \tilde{A} must accept

What Could Go Wrong?

What Could Go Wrong?

- If H is not 2-connected:

What Could Go Wrong?

- If H is not 2-connected:

H:
(0)-(1)-(2)

What Could Go Wrong?

- If H is not 2-connected:

H:

$\widetilde{H}:$

What Could Go Wrong?

- If H is not 2-connected:

H:

\widetilde{H} :

G does not contain H ! But... If $c(u)=c(v)=2$:

What Could Go Wrong?

- If H is not 2-connected:

H:

G does not contain H ! But... If $c(u)=c(v)=2$:

What Could Go Wrong?

- If H is not 2-connected:

H:

G does not contain H ! But... If $c(u)=c(v)=2$:

Correctness Proof

Correctness Proof

- Suppose G contains H as a subgraph

Correctness Proof

- Suppose G contains H as a subgraph

- W.p. $\geq 1 / k^{k}, G$ contains a properly colored copy of H
"Properly colored"

Correctness Proof

- Suppose G contains H as a subgraph

- W.p. $\geq 1 / k^{k}, G$ contains a properly colored copy of H
- After adding imaginary parts...
- A copy of \widetilde{H} appears

Correctness Proof

- Now suppose G does not contain H

Correctness Proof

- Now suppose G does not contain H
- We show that for any coloring of G, resulting \tilde{G} does not contain \widetilde{H}

Correctness Proof

- Now suppose G does not contain H
- We show that for any coloring of G, resulting \tilde{G} does not contain \widetilde{H}
- Suppose that it does...

Correctness Proof

- Now suppose G does not contain H
- We show that for any coloring of G, resulting \tilde{G} does not contain \widetilde{H}
- Suppose that it does...
- Let $\sigma: \widetilde{H} \rightarrow \tilde{G}$ be an isomorphism from \widetilde{H} into \tilde{G}

Correctness Proof

- Now suppose G does not contain H
- We show that for any coloring of G, resulting \tilde{G} does not contain \widetilde{H}
- Suppose that it does...
- Let $\sigma: \widetilde{H} \rightarrow \tilde{G}$ be an isomorphism from \widetilde{H} into \tilde{G}
- Let $\sigma(\widetilde{H})$ be the image of \widetilde{H} inside \tilde{G}

Correctness Proof

- Now suppose G does not contain H
- We show that for any coloring of G, resulting \tilde{G} does not contain \widetilde{H}
- Suppose that it does...
- Let $\sigma: \widetilde{H} \rightarrow \tilde{G}$ be an isomorphism from \widetilde{H} into \tilde{G}
- Let $\sigma(\widetilde{H})$ be the image of \widetilde{H} inside \tilde{G}
- Let $\sigma(H)$ be the image of H inside $\sigma(\widetilde{H})$

Correctness Proof

- Now suppose G does not contain H
- We show that for any coloring of G, resulting \tilde{G} does not contain \widetilde{H}
- Suppose that it does...
- Let $\sigma: \widetilde{H} \rightarrow \tilde{G}$ be an isomorphism from \widetilde{H} into \tilde{G}
- Let $\sigma(\widetilde{H})$ be the image of \widetilde{H} inside \tilde{G}
- Let $\sigma(H)$ be the image of H inside $\sigma(\widetilde{H})$
- G is H-free $\Rightarrow \sigma(H)$ must contain some imaginary nodes!

Correctness Proof

- Now suppose G does not contain H
- We show that for any coloring of G, resulting \tilde{G} does not contain \widetilde{H}
- Suppose that it does...
- Let $\sigma: \widetilde{H} \rightarrow \tilde{G}$ be an isomorphism from \widetilde{H} into \tilde{G}
- Let $\sigma(\widetilde{H})$ be the image of \widetilde{H} inside \tilde{G}
- Let $\sigma(H)$ be the image of H inside $\sigma(\widetilde{H})$
- G is H-free $\Rightarrow \sigma(H)$ must contain some imaginary nodes!
- Proof strategy: show that \tilde{G} contains infinitely many copies of H...

Correctness Proof

- Lemma 1: $\sigma(H)$ is inside the imaginary world of some vertex v

Correctness Proof

- Lemma 1: $\sigma(H)$ is inside the imaginary world of some vertex v
- Proof:
- We said: $\sigma(H)$ intersects some vertex v 's imaginary world
- Can't reach rest of the world except through v

Correctness Proof

- Lemma 1: $\sigma(H)$ is inside the imaginary world of some vertex v
- Proof:
- We said: $\sigma(H)$ intersects some vertex v 's imaginary world
- Can't reach rest of the world except through v
- If $\sigma(H)$ "spills outside"...
- Removing v disconnects $\sigma(H)$

Correctness Proof

- Lemma 1: $\sigma(H)$ is inside the imaginary world of some vertex v
- Proof:
- We said: $\sigma(H)$ intersects some vertex v 's imaginary world
- Can't reach rest of the world except through v
- If $\sigma(H)$ "spills outside"...
- Removing v disconnects $\sigma(H)$
- ... but H is 2-connected

Correctness Proof

\checkmark Lemma 1: $\sigma(H)$ is inside the imaginary world of some vertex v

- Lemma 2: $\sigma\left(H_{c(v)}\right) \nsubseteq v$'s imaginary world
- Proof: not enough room in there...

Correctness Proof

\checkmark Lemma 1: $\sigma(H)$ is inside the imaginary world of some vertex v

- Lemma 2: $\sigma\left(H_{c(v)}\right) \nsubseteq v$'s imaginary world
- Proof: not enough room in there...
imaginary world $\sim H_{c(v)}$

$$
\sigma(H) \text { takes up space }
$$

Correctness Proof

\checkmark Lemma 1: $\sigma(H)$ is inside the imaginary world of some vertex v
\checkmark Lemma 2: $\sigma\left(H_{c(v)}\right) \nsubseteq v$'s imaginary world

- Lemma 3: $v \in \sigma\left(H_{c(v)}\right)$

Correctness Proof

\checkmark Lemma 1: $\sigma(H)$ is inside the imaginary world of some vertex v
\checkmark Lemma 2: $\sigma\left(H_{c(v)}\right) \nsubseteq v$'s imaginary world

- Lemma 3: $v \in \sigma\left(H_{c(v)}\right)$
- Proof:
- $\sigma(H) \subseteq v$'s imaginary world

Correctness Proof

\checkmark Lemma 1: $\sigma(H)$ is inside the imaginary world of some vertex v
\checkmark Lemma 2: $\sigma\left(H_{c(v)}\right) \nsubseteq v$'s imaginary world

- Lemma 3: $v \in \sigma\left(H_{c(v)}\right)$
- Proof:
- $\sigma(H) \subseteq v$'s imaginary world
- $\sigma\left(H_{c(v)}\right)$ spills out

Correctness Proof

\checkmark Lemma 1: $\sigma(H)$ is inside the imaginary world of some vertex v
\checkmark Lemma 2: $\sigma\left(H_{c(v)}\right) \nsubseteq v$'s imaginary world

- Lemma 3: $v \in \sigma\left(H_{c(v)}\right)$
- Proof:
- $\sigma(H) \subseteq v$'s imaginary world
- $\sigma\left(H_{c(v)}\right)$ spills out
- Can't get to $\sigma\left(H_{c(v)}\right)$ except through $v \ldots$

Correctness Proof

\checkmark Lemma 1: $\sigma(H)$ is inside the imaginary world of some vertex v
\checkmark Lemma 2: $\sigma\left(H_{c(v)}\right) \nsubseteq v$'s imaginary world

- Lemma 3: $v \in \sigma\left(H_{c(v)}\right)$
- Proof:
- $\sigma(H) \subseteq v$'s imaginary world
- $\sigma\left(H_{c(v)}\right)$ spills out
- Can't get to $\sigma\left(H_{c(v)}\right)$ except through $v \ldots$
- So $v \in \sigma\left(H_{c(v)}\right)$

Correctness Proof

\checkmark Lemma 1: $\sigma(H)$ is inside the imaginary world of some vertex v
\checkmark Lemma 2: $\sigma\left(H_{c(v)}\right) \nsubseteq v$'s imaginary world
\checkmark Lemma 3: $v \in \sigma\left(H_{c(v)}\right)$

- Lemma 4: $\sigma\left(\widetilde{H} \backslash H_{c(v)}\right) \subseteq v$'s imaginary world $\sigma\left(H_{c(v)}\right)$

v 's imaginary world

Correctness Proof

\checkmark Lemma 1: $\sigma(H)$ is inside the imaginary world of some vertex v
\checkmark Lemma 2: $\sigma\left(H_{c(v)}\right) \nsubseteq v$'s imaginary world
$\checkmark \underline{\text { Lemma 3: }} v \in \sigma\left(H_{c(v)}\right)$

- Lemma 4: $\sigma\left(\widetilde{H} \backslash H_{c(v)}\right) \subseteq v$'s imaginary world $\sigma\left(H_{c(v)}\right)$
- Proof: suppose $\sigma\left(\widetilde{H} \backslash H_{c(v)}\right)$ "spills out"

v^{\prime} s imaginary world

Correctness Proof

\checkmark Lemma 1: $\sigma(H)$ is inside the imaginary world of some vertex v
\checkmark Lemma 2: $\sigma\left(H_{c(v)}\right) \nsubseteq v$'s imaginary world
$\checkmark \underline{\text { Lemma 3: }} v \in \sigma\left(H_{c(v)}\right)$

- Lemma 4: $\sigma\left(\widetilde{H} \backslash H_{c(v)}\right) \subseteq v$'s imaginary worldit $\sigma\left(H_{c(v)}\right)$
- Proof: suppose $\sigma\left(\widetilde{H} \backslash H_{c(v)}\right)$ "spills out"
- But v is the only exit!

v^{\prime} s imaginary world

Correctness Proof

\checkmark Lemma 1: $\sigma(H)$ is inside the imaginary world of some vertex v
\checkmark Lemma 2: $\sigma\left(H_{c(v)}\right) \nsubseteq v$'s imaginary world
$\checkmark \underline{\text { Lemma 3: }} v \in \sigma\left(H_{c(v)}\right)$

- Lemma 4: $\sigma\left(\widetilde{H} \backslash H_{c(v)}\right) \subseteq v$'s imaginary world $\quad \sigma\left(H_{c(v)}\right)$
- Proof: suppose $\sigma\left(\widetilde{H} \backslash H_{c(v)}\right)$ "spills out"
- But v is the only exit!
- And v is already taken...

$$
\text { since } v \in \sigma\left(H_{c(v)}\right)
$$

v^{\prime} s imaginary world

Correctness Proof

\checkmark Lemma 1: $\sigma(H)$ is inside the imaginary world of some vertex v
\checkmark Lemma 2: $\sigma\left(H_{c(v)}\right) \nsubseteq v$'s imaginary world
\checkmark Lemma 3: $v \in \sigma\left(H_{c(v)}\right)$
\checkmark Lemma 4: $\sigma\left(\widetilde{H} \backslash H_{c(v)}\right) \subseteq v$'s imaginary world $\sim H_{c(v)}$
$H_{c(v)}$

- So... $H_{c(v)}$ contains a copy of $\widetilde{H} \backslash H_{c(v)}$???
- What does σ do to this copy???

Correctness Proof

- Claim: σ maps the copy of $\widetilde{H} \backslash H_{c(v)}$ inside $H_{c(v)}$ to a new copy of $\widetilde{H} \backslash H_{c(v)}$ inside v 's imaginary world
- Can't re-use the old copy
- Can't spill out
$H_{c(v)}$

- So... $H_{c(v)}$ contains a copy of $\widetilde{H} \backslash H_{c(v)}$???
- What does σ do to this copy???

Correctness Proof

- Claim: σ maps the copy of $\widetilde{H} \backslash H_{c(v)}$ inside $H_{c(v)}$ to a new copy of $\widetilde{H} \backslash H_{c(v)}$ inside v 's imaginary world
- Can't re-use the old copy
- Can't spill out
- By induction...

- So... $H_{c(v)}$ contains a copy of $\widetilde{H} \backslash H_{c(v)}$???
- What does σ do to this copy???

Correctness Proof

- Claim: σ maps the copy of $\widetilde{H} \backslash H_{c(v)}$ inside $H_{c(v)}$ to a new copy of $\widetilde{H} \backslash H_{c(v)}$ inside v 's imaginary world
- Can't re-use the old copy
- Can't spill out
- By induction...

- So... $H_{c(v)}$ contains a copy of $\widetilde{H} \backslash H_{c(v)}$???
- What does σ do to this copy???

Reduction \#2: Edge Replacement Reminder

- Take a 4-cycle graph

Reduction \#2: Edge Replacement Reminder

- Take a 4-cycle graph
- Replace each edge by an arbitrary graph such that the whole graph is a 2-connected graph

Reduction \#2: Edge Replacement Reminder

- Take a 4-cycle graph
- Replace each edge by an arbitrary graph such that the whole graph is a 2-connected graph

Reduction \#2: Edge Replacement Reminder

- Take a 4-cycle graph
- Replace each edge by an arbitrary graph such that the whole graph is a 2-connected graph
- We call this class of graphs class B

2-Party Communication Complexity

Applying Two-Player Communication Complexity Lower Bounds

Textbook reduction [Kushilevitz-Nisan]:

Given algorithm A for solving task T...:

Solution for $T \Rightarrow$ answer for DISJOINTNESS

