Lower Bounds for Subgraph Detection in the CONGEST Model

- TZLIL GONEN
- JOINT WORK WITH ROTEM OSHMAN
- Tel Aviv University

Input:

- 1. Network graph G
- 2. Fixed graph H

Output: does G contain H as a subgraph?

Input:

- 1. Network graph G
- 2. Fixed graph H

Output: does G contain H as a subgraph?

G

Input:

- 1. Network graph G
- 2. Fixed graph H

<u>Output:</u> does G contain H as a subgraph? Model: CONGEST

• Lower bounds for cycles

- Lower bounds for cycles
 - Even cycles: $\widetilde{\Omega}(\sqrt{n})$ rounds [Korhonen, Rybicki '17]
 - Odd cycles: $\widetilde{\Omega}(n)$ rounds [Drucker, Kuhn, Oshman '14]

- Lower bounds for cycles
 - Even cycles: $\widetilde{\Omega}(\sqrt{n})$ rounds [Korhonen, Rybicki '17]
 - Odd cycles: $\widetilde{\Omega}(n)$ rounds [Drucker, Kuhn, Oshman '14]
- Trees require $\Theta(1)$ rounds [Fraigniaud, Montealegre, Olivetti, Rapaport, Todinca 17'] and [Fischer, Gonen, Oshman '17]

- Lower bounds for cycles
 - Even cycles: $\widetilde{\Omega}(\sqrt{n})$ rounds [Korhonen, Rybicki '17]
 - Odd cycles: $\widetilde{\Omega}(n)$ rounds [Drucker, Kuhn, Oshman '14]
- Trees require $\Theta(1)$ rounds [Fraigniaud, Montealegre, Olivetti, Rapaport, Todinca 17'] and [Fischer, Gonen, Oshman '17]
- Some graphs of size k require $\widetilde{\Omega}(n^{2-1/k})$ rounds [Fischer, Gonen, Oshman '17]

- Lower bounds for cycles
 - Even cycles: $\widetilde{\Omega}(\sqrt{n})$ rounds [Korhonen, Rybicki '17]
 - Odd cycles: $\widetilde{\Omega}(n)$ rounds [Drucker, Kuhn, Oshman '14]
- Trees require $\Theta(1)$ rounds [Fraigniaud, Montealegre, Olivetti, Rapaport, Todinca 17'] and [Fischer, Gonen, Oshman '17]
- Some graphs of size k require $\widetilde{\Omega}(n^{2-1/k})$ rounds [Fischer, Gonen, Oshman '17]
- Our question: what else?

• Take any 2-connected graph for which a lower bound is known...

- Take any 2-connected graph for which a lower bound is known...
- Like this graph:

 $\widetilde{\Omega}(n)$ rounds [Drucker, Kuhn, Oshman '14]

- Take any 2-connected graph for which a lower bound is known...
- ... or this graph:

- Take any 2-connected graph for which a lower bound is known...
- ... or even this graph:

 $\widetilde{\Omega}(n^{2-1/k})$ rounds for size $\Theta(k)$ graph [Fischer, Gonen, Oshman '17]

- Take any 2-connected graph for which a lower bound is known...
- Attach arbitrary connected graph to each vertex...

- Take any 2-connected graph for which a lower bound is known...
- Attach arbitrary connected graph to each vertex...
- Obtain nearly the same lower bound

• Consider any connected graph *H*

- Consider any connected graph *H*
- Decompose *H* into a tree of 2-connected components C_1, \ldots, C_k

- Consider any connected graph *H*
- Decompose *H* into a tree of 2-connected components C_1, \ldots, C_k
- Hardness of *H*-freeness $\geq \max_{i}$ h(ardness of freeness)

- Take a 4-cycle (or larger cycle)
- Replace each edge by an arbitrary graph s.t. the result is 2connected

- Take a 4-cycle (or larger cycle)
- Replace each edge by an arbitrary graph s.t. the result is 2connected
- Like this graph:

- Take a 4-cycle (or larger cycle)
- Replace each edge by an arbitrary graph s.t. the result is 2connected
- ... or this graph:

- Take a 4-cycle (or larger cycle)
- Replace each edge by an arbitrary graph s.t. the result is 2connected
- ... or even this graph:

- Take a 4-cycle (or larger cycle)
- Replace each edge by an arbitrary graph s.t. the result is 2connected
- Obtain lower bound of $\Omega(n^{\delta})$ rounds
- $\delta \in (0, 1/2]$ depends on |H|

• Vertex replacement reduction:

- Vertex replacement reduction:
 - The reduction
 - Proof outline

- Vertex replacement reduction:
 - The reduction
 - Proof outline
- Outline of edge replacement reduction

- Vertex replacement reduction:
 - The reduction
 - Proof outline
- Outline of edge replacement reduction
- ... the rest is in the paper

• Notation:

 \widetilde{H} :

Graph we want a lower bound for

• Fix an algorithm \tilde{A} for testing \tilde{H} -freeness

- Fix an algorithm \tilde{A} for testing \tilde{H} -freeness
- Construction for testing *H*-freeness:

- Fix an algorithm \tilde{A} for testing \tilde{H} -freeness
- Construction for testing *H*-freeness:
 - 1. Each $v \in V$ chooses a "role in H", c(v), and "imagines" it is connected to $H_{c(v)}$

- Fix an algorithm \tilde{A} for testing \tilde{H} -freeness
- Construction for testing *H*-freeness:
 - 1. Each $v \in V$ chooses a "role in H", c(v), and "imagines" it is connected to $H_{c(v)}$
- 2. Simulate \tilde{A} on resulting network (real + imaginary)

- Fix an algorithm \tilde{A} for testing \tilde{H} -freeness
- Construction for testing *H*-freeness:
 - 1. Each $v \in V$ chooses a "role in H", c(v), and "imagines" it is connected to $H_{c(v)}$
- 2. Simulate \tilde{A} on resulting network (real + imaginary)
- How to choose a role?

- Fix an algorithm \tilde{A} for testing \tilde{H} -freeness
- Construction for testing *H*-freeness:
 - 1. Each $v \in V$ chooses a "role in H", c(v), and "imagines" it is connected to $H_{c(v)}$
- 2. Simulate \tilde{A} on resulting network (real + imaginary)
- How to choose a role? Randomly...

• Let k = |V(H)|

- Let k = |V(H)|
- Let \tilde{G} be the real + imaginary network graph

- Let k = |V(H)|
- Let \tilde{G} be the real + imaginary network graph
- Claim:

1. If *G* contains *H*, then \tilde{G} contains \tilde{H} w.p. $\geq 1/k^k$

- Let k = |V(H)|
- Let \tilde{G} be the real + imaginary network graph
- Claim:
 - 1. If G contains H, then \tilde{G} contains \tilde{H} w.p. $\geq 1/k^{\kappa}$

...with high probability

So \tilde{A} must reject

- Let k = |V(H)|
- Let \tilde{G} be the real + imaginary network graph
- Claim:
 - 1. If G contains H, then \tilde{G} contains \tilde{H} w.p. $\geq 1/k^{\kappa}$
 - 2. If G does not contain H, then \tilde{G} never contains \tilde{H}

So \tilde{A} must reject

...with high probability

- Let k = |V(H)|
- Let \tilde{G} be the real + imaginary network graph
- Claim: So \tilde{A} must reject
 - 1. If G contains H, then \tilde{G} contains \tilde{H} w.p. $\geq 1/k^{\kappa}$
 - 2. If G does not contain H, then \tilde{G} never contains \tilde{H}

...with high probability

...with high probability

So A must accept

- Let k = |V(H)|
- Let \tilde{G} be the real + imaginary network graph
- Claim:
 - 1. If G contains H, then \tilde{G} contains \tilde{H} w.p. $\geq 1/k^{\kappa}$
 - 2. If G does not contain H, then \tilde{G} never contains \tilde{H}
- Reduction can be derandomized
 - Additional $O(\log n)$ factor

...with high probability

So \tilde{A} must accept

So \tilde{A} must reject

...with high probability

• If *H* is not 2-connected:

• If *H* is not 2-connected:

• If *H* is not 2-connected:

• If *H* is not 2-connected:

G does not contain H! But... If c(u) = c(v) = 2:

• If *H* is not 2-connected:

G does not contain H! But... If c(u) = c(v) = 2:

• If *H* is not 2-connected:

G does not contain H! But... If c(u) = c(v) = 2:

• Suppose *G* contains *H* as a subgraph

• Suppose G contains H as a subgraph

"Properly colored"

• W.p. $\geq 1/k^k$, *G* contains a properly colored copy of *H*

G

- Suppose G contains H as a subgraph
- W.p. $\geq 1/k^k$, G contains a properly colored copy of H
- After adding imaginary parts...
- A copy of \widetilde{H} appears

• Now suppose *G* does not contain *H*

- Now suppose *G* does not contain *H*
- We show that for any coloring of G, resulting \tilde{G} does not contain \tilde{H}

- Now suppose *G* does not contain *H*
- We show that for any coloring of G, resulting \tilde{G} does not contain \tilde{H}
- Suppose that it does...

- Now suppose *G* does not contain *H*
- We show that for any coloring of G, resulting \tilde{G} does not contain \tilde{H}
- Suppose that it does...
 - Let $\sigma: \widetilde{H} \to \widetilde{G}$ be an isomorphism from \widetilde{H} into \widetilde{G}

- Now suppose *G* does not contain *H*
- We show that for any coloring of G, resulting \tilde{G} does not contain \tilde{H}
- Suppose that it does...
 - Let $\sigma: \widetilde{H} \to \widetilde{G}$ be an isomorphism from \widetilde{H} into \widetilde{G}
 - Let $\sigma(\widetilde{H})$ be the image of \widetilde{H} inside \widetilde{G}

- Now suppose *G* does not contain *H*
- We show that for any coloring of G, resulting \tilde{G} does not contain \tilde{H}
- Suppose that it does...
 - Let $\sigma: \widetilde{H} \to \widetilde{G}$ be an isomorphism from \widetilde{H} into \widetilde{G}
 - Let $\sigma(\widetilde{H})$ be the image of \widetilde{H} inside \widetilde{G}
 - Let $\sigma(H)$ be the image of H inside $\sigma(\widetilde{H})$

- Now suppose *G* does not contain *H*
- We show that for any coloring of G, resulting \tilde{G} does not contain \tilde{H}
- Suppose that it does...
 - Let $\sigma: \widetilde{H} \to \widetilde{G}$ be an isomorphism from \widetilde{H} into \widetilde{G}
 - Let $\sigma(\widetilde{H})$ be the image of \widetilde{H} inside \widetilde{G}
 - Let $\sigma(H)$ be the image of H inside $\sigma(\widetilde{H})$
 - G is H-free $\Rightarrow \sigma(H)$ must contain some imaginary nodes!

- Now suppose *G* does not contain *H*
- We show that for any coloring of G, resulting \tilde{G} does not contain \tilde{H}
- Suppose that it does...
 - Let $\sigma: \widetilde{H} \to \widetilde{G}$ be an isomorphism from \widetilde{H} into \widetilde{G}
 - Let $\sigma(\widetilde{H})$ be the image of \widetilde{H} inside \widetilde{G}
 - Let $\sigma(H)$ be the image of H inside $\sigma(\widetilde{H})$
 - *G* is *H*-free $\Rightarrow \sigma(H)$ must contain some imaginary nodes!
- Proof strategy: show that \tilde{G} contains infinitely many copies of H...

• Lemma 1: $\sigma(H)$ is inside the imaginary world of some vertex v

- Lemma 1: $\sigma(H)$ is inside the imaginary world of some vertex v
- Proof:
 - We said: $\sigma(H)$ intersects some vertex v's imaginary world
 - Can't reach rest of the world except through v

- Lemma 1: $\sigma(H)$ is inside the imaginary world of some vertex v
- Proof:
 - We said: $\sigma(H)$ intersects some vertex v's imaginary world
 - Can't reach rest of the world except through v
 - If $\sigma(H)$ "spills outside"...
 - Removing v disconnects $\sigma(H)$

- Lemma 1: $\sigma(H)$ is inside the imaginary world of some vertex v
- Proof:
 - We said: $\sigma(H)$ intersects some vertex v's imaginary world
 - Can't reach rest of the world except through v
 - If $\sigma(H)$ "spills outside"...
 - Removing v disconnects $\sigma(H)$
 - ... but *H* is 2-connected

- ✓ Lemma 1: σ(H) is inside the imaginary world of some vertex v
 Lemma 2: σ(H_{c(v)}) ⊈ v's imaginary world
- <u>Proof:</u> not enough room in there...

- ✓ Lemma 1: σ(H) is inside the imaginary world of some vertex v
 Lemma 2: σ(H_{c(v)}) ⊈ v's imaginary world
- <u>Proof:</u> not enough room in there...

- ✓ Lemma 1: $\sigma(H)$ is inside the imaginary world of some vertex v✓ Lemma 2: $\sigma(H_{c(v)}) \not\subseteq v$'s imaginary world
- Lemma 3: $v \in \sigma(H_{c(v)})$

- ✓ Lemma 1: $\sigma(H)$ is inside the imaginary world of some vertex v✓ Lemma 2: $\sigma(H_{c(v)}) \not\subseteq v$'s imaginary world
- Lemma 3: $v \in \sigma(H_{c(v)})$
- <u>Proof:</u>
 - $\sigma(H) \subseteq v$'s imaginary world

- ✓ Lemma 1: $\sigma(H)$ is inside the imaginary world of some vertex v✓ Lemma 2: $\sigma(H_{c(v)}) \not\subseteq v$'s imaginary world
- Lemma 3: $v \in \sigma(H_{c(v)})$
- <u>Proof:</u>
 - $\sigma(H) \subseteq v$'s imaginary world
 - $\sigma(H_{c(v)})$ spills out

- ✓ Lemma 1: $\sigma(H)$ is inside the imaginary world of some vertex v✓ Lemma 2: $\sigma(H_{c(v)}) \not\subseteq v$'s imaginary world
- Lemma 3: $v \in \sigma(H_{c(v)})$
- <u>Proof:</u>
 - $\sigma(H) \subseteq v$'s imaginary world
 - $\sigma(H_{c(v)})$ spills out
 - Can't get to $\sigma(H_{c(v)})$ except through v...

- ✓ Lemma 1: $\sigma(H)$ is inside the imaginary world of some vertex v✓ Lemma 2: $\sigma(H_{c(v)}) \not\subseteq v$'s imaginary world
- Lemma 3: $v \in \sigma(H_{c(v)})$
- <u>Proof:</u>
 - $\sigma(H) \subseteq v$'s imaginary world
 - $\sigma(H_{c(v)})$ spills out
 - Can't get to $\sigma(H_{c(v)})$ except through v...
 - So $v \in \sigma(H_{c(v)})$

✓ Lemma 1: $\sigma(H)$ is inside the imaginary world of some vertex v✓ Lemma 2: $\sigma(H_{c(v)}) \not\subseteq v$'s imaginary world ✓ Lemma 3: $v \in \sigma(H_{c(v)})$ • Lemma 4: $\sigma(\tilde{H} \setminus H_{c(v)}) \subseteq v$'s imaginary world $\sigma(H_{c(v)})$

 $\sigma(\widetilde{H}\setminus H_{c(v)})$

✓ Lemma 1: $\sigma(H)$ is inside the imaginary world of some vertex v✓ Lemma 2: $\sigma(H_{c(v)}) \not\subseteq v$'s imaginary world ✓ Lemma 3: $v \in \sigma(H_{c(v)})$

 $\sigma(\widetilde{H} \setminus H_{c(v)})$

- Lemma 4: $\sigma(\widetilde{H} \setminus H_{c(v)}) \subseteq v$'s imaginary world $\sigma(H_{c(v)})$
- <u>Proof</u>: suppose $\sigma(\widetilde{H} \setminus H_{c(v)})$ "spills out".

- \checkmark Lemma 1: $\sigma(H)$ is inside the imaginary world of some vertex v ✓ Lemma 2: $\sigma(H_{c(v)}) \not\subseteq v$'s imaginary world ✓ Lemma 3: $v \in \sigma(H_{c(v)})$
- Lemma 4: $\sigma(\widetilde{H} \setminus H_{c(v)}) \subseteq v$'s imaginary world $\sigma(H_{c(v)})$
- <u>Proof</u>: suppose $\sigma(\widetilde{H} \setminus H_{c(\nu)})$ "spills out". $\sigma(\widetilde{H}\setminus H_{c(v)})$
 - But *v* is the only exit!

- ✓ Lemma 1: $\sigma(H)$ is inside the imaginary world of some vertex v ✓ Lemma 2: $\sigma(H_{c(v)}) \not\subseteq v$'s imaginary world ✓ Lemma 3: $v \in \sigma(H_{c(v)})$
- Lemma 4: $\sigma(\widetilde{H} \setminus H_{c(v)}) \subseteq v$'s imaginary world $\sigma(H_{c(v)})$
- <u>Proof</u>: suppose $\sigma(\widetilde{H} \setminus H_{c(\nu)})$ "spills out"... $\sigma\bigl(\widetilde{H}\setminus H_{c(v)}\bigr)$
 - But *v* is the only exit!
 - And v is already taken... since $v \in \sigma(H_{c(v)})$

✓ Lemma 1: $\sigma(H)$ is inside the imaginary world of some vertex v✓ Lemma 2: $\sigma(H_{c(v)}) \not\subseteq v$'s imaginary world ✓ Lemma 3: $v \in \sigma(H_{c(v)})$ ✓ Lemma 4: $\sigma(\tilde{H} \setminus H_{c(v)}) \subseteq v$'s imaginary world ~ $H_{c(v)}$

- So... $H_{c(v)}$ contains a copy of $\widetilde{H} \setminus H_{c(v)}$???
- What does σ do to this copy???

- <u>Claim</u>: σ maps the copy of $\widetilde{H} \setminus H_{c(v)}$ inside $H_{c(v)}$ to a new copy of $\widetilde{H} \setminus H_{c(v)}$ inside *v*'s imaginary world
 - Can't re-use the old copy
 - Can't spill out

- So... $H_{c(v)}$ contains a copy of $\widetilde{H} \setminus H_{c(v)}$???
- What does σ do to this copy???

- <u>Claim</u>: σ maps the copy of $\widetilde{H} \setminus H_{c(v)}$ inside $H_{c(v)}$ to a new copy of $\widetilde{H} \setminus H_{c(v)}$ inside *v*'s imaginary world
 - Can't re-use the old copy
 - Can't spill out
- By induction...

- So... $H_{c(v)}$ contains a copy of $\widetilde{H} \setminus H_{c(v)}$???
- What does σ do to this copy???

- <u>Claim</u>: σ maps the copy of $\widetilde{H} \setminus H_{c(v)}$ inside $H_{c(v)}$ to a new copy of $\widetilde{H} \setminus H_{c(v)}$ inside *v*'s imaginary world
 - Can't re-use the old copy
 - Can't spill out
- By induction...

- So... $H_{c(v)}$ contains a copy of $\widetilde{H} \setminus H_{c(v)}$???
- What does σ do to this copy???

Take a 4-cycle graph

- Take a 4-cycle graph
- Replace each edge by an arbitrary graph such that the whole graph is a 2-connected graph

- Take a 4-cycle graph
- Replace each edge by an arbitrary graph such that the whole graph is a 2-connected graph

- Take a 4-cycle graph
- Replace each edge by an arbitrary graph such that the whole graph is a 2-connected graph
- We call this class of graphs class *B*

2-Party Communication Complexity

Applying Two-Player Communication Complexity Lower Bounds

Textbook reduction [Kushilevitz-Nisan]:

Given algorithm A for solving task T...

