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Distance Bounded Network Design

Given input graph G , find a subgraph H with minimum cost

such that certain pairs of vertices are within some distance

bound D of each other in H.

A well-known class are graph spanners: the distance in H for

certain pairs is within a certain factor of their original distance

in G .

Most of these problems are NP-hard so the focus is often

polynomial time approximation algorithms.
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Example of Distance Bounded Network Design

Set of demands: S = {(u, v), (w , v), (y ,w)}, distance bound

D = 2.

Find smallest subgraph H of G s.t, all the pairs in S are

connected with a path of length at most 2.
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Distributed Linear Programming

Solving linear programs is often challenging task in distributed

settings.

Focus has mainly been solving packing and covering linear

programs in a distributed manner (e.g. Kuhn, Moscibroda,

and Wattenhofer 2006).

We provide efficient distributed algorithms for distance-bounded net-

work design LPs and a class of convex problem that generalize these

problems.
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Summary of Results

For several distance-bounded network design problems, we

give approximation guarantees that match their best known

centralized bounds.

Example of these problems are: Directed k-Spanner, Basic

3-Spanner, Basic 4-Spanner and Lowest-Degree k-Spanner.

These algorithms run in O(Dlogn) rounds, where D is the

maximum distance bound.

This is the best known bound for these problems in the

LOCAL model, and local computation is polynomial time.
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Communication model

LOCAL model:

Nodes take step in synchronous rounds and in each round

every node can send an arbitrary message of unbounded size to

each of its neighbors in the underlying graph G = (V ,E ).

Communication is bidirectional, but the input graph may be

directed.
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Related Work

Kuhn, Moscibroda, and Wattenhofer (2006) use a Linial-Saks

decomposition to solve a packing or covering LP.

Dinitz and Krauthgamer (2011) showed how to solve the

Basic 2-Spanner LP in O(log2 n) rounds.

We use similar techniques based on padded decompositions.

Barenboim, Elkin, and Gavoille (2016) showed for any integer

parameters k, α, gives an O(n1/α)-approximation for Directed

k-Spanner in exp(O(α)) + O(k) time.

They require heavy (exponential time) local computation.
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Approximation with Linear Programming

The discrete problem is modelled via an integer program of

the following form:

max cT x

s.t. Ax ≤ b

x = {0, 1}d

The problem is then relaxed into a linear program by changing each

integer constraint xi = {0, 1} to to 0 ≤ xi ≤ 1.

Fractional solutions will be rounded to integers using an appropriate

rounding scheme.
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Distance-Bounded Network Design Convex Program
We consider convex programs of the following form:

min g(x)

s.t.
∑

P∈Pu,v :e∈P

fP ≤ xe ∀(u, v) ∈ S,∀e ∈ E

∑
P∈Pu,v

fP ≥ 1 ∀(u, v) ∈ S

xe ≥ 0 ∀e ∈ E

fP ≥ 0 ∀(u, v) ∈ S,∀P ∈ Pu,v

g(x) is typically a linear function, but more generally a convex

function that has a certain partitionability property.

Pu,v is a set of allowed paths, we assume that length of these paths

are bounded by D.
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Solving the Distance-Bounded Network Design Convex

Program

Our main result is the following:

Theorem

For any constant ε > 0, any distance-bounded network design

convex program can be solved up to a (1 + ε)-approximation in

O(D log n) rounds in the LOCAL model, where

D = max(u,v)∈S maxP∈Pu,v `(P).

If the convex program can be solved in polynomial time in the

centralized sequential setting, then the distributed algorithm

uses only polynomial-time computations at every node.
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Padded Decomposition

Definition

Given an undirected graph G , a (k , ε)-padded decomposition,

where 0 < ε ≤ 1, is a probability measure µ over the set of graph

partitions (clusterings) that has the following properties:

1) For every P ∈ supp(µ), and every cluster C ∈ P, we have:

diam(C ) ≤ O((k/ε) log n).

2) For every u ∈ V , the probability that all nodes in B(u, k) are

in the same cluster is at least 1− ε.
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Padded Decomposition

Every cluster has low diameter of O((k/ε) log n).

For each node the probability that all node is k-neighborhood

are in the same cluster is at least 1− ε.
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High Level Idea: Partition

Partition the graph by a distributed algorithm that samples

from a (D, ε)-padded decomposition in O(Dε ln n) rounds.

Nodes know the center of the cluster they belong to.
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High Level Idea: Solving Local LPs

The center of each cluster solves a local linear program.

Cluster center broadcasts the solutions to all the nodes in the

cluster.
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High Level Idea: Putting it together

Repeat this process O( ln nε ) times in parallel (decompositions

are independent).

For each edge taking average over local solutions for iterations

in which the ball around that edge is in the same cluster will

yield to a global solution.

Using Chernoff bounds, we show that the global solution

formed is feasible to the global LP and is a constant factor of

the optimal solution.
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Applications

Distance-bounded network design problems that have a local

rounding can be solved.

With high probability there is an O(n1/2 ln n)-approximation

to the Directed-k-spanner problem that runs in O(k log n)

time in the LOCAL model.

There is a distributed algorithm that w.h.p. computes an

Õ(∆(1−1/k)2)-approximation to the Lowest-k-Degree Spanner

problem, taking O(k log n) rounds of the LOCAL.
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Thanks!

Questions?
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