
Distributed 

Approximation

for Tree Augmentation

Michal Dory, Technion

Joint work with: Keren Censor-Hillel, Technion



Consider a Communication 

Network
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We can communicate over a 

spanning tree
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There are many constructions of 

minimum spanning trees (MST) 
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[Gallager, Humblet and Spira 83, Kutten and 

Peleg 95, Garay, Kutten and Peleg 98, 

Pandurangan, Robinson and Scquizzato 17, 

Elkin 17,...]



Trees cannot survive a link 

failure
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Trees cannot survive a link 
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The Tree Augmentation Problem (TAP)
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Input:

a graph 𝐺
a spanning tree 𝑻

Goal:

augment 𝑻 to be 

2-edge-connected 
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 A central problem in network design 

 Has many sequential algorithms: 

[Frederickson and JáJá 81, Khuller and 

Thurimella 93, Goemans et al. 94, Jain 01, 

Kortsarz and Nutov 16, Adjiashvili 17…].

 Goal: solve TAP in the distributed setting.

The Tree Augmentation Problem (TAP)
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The CONGEST model

 Communication network 

with 𝑛 processors

 Synchronous rounds

 Messages of O(log 𝑛) bits

 Time = number of rounds

 The input and output are 

local
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𝑟



 Builds a new virtual graph 𝐺′

 Finds a directed MST in 𝐺′

 This gives a 2-approximation in 𝐺
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Sequential Approximation for TAP
[Khuller and Thurimella 93]



Distributed Approximation for TAP
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The Graph 𝐺′

 All the non-tree edges in 𝐺′ are between 

ancestors to descendants:
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The Graph 𝐺′

 The corresponding edges in 𝐺′ cover
exactly the same tree edges:
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The Graph 𝐺′

 We can build 𝐺′ in 𝑂(ℎ) rounds using LCA 

labels of 𝑂 log 𝑛 bits [Alstrup et al. 2004]
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Finding an Optimal Augmentation in 𝐺′
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Conclusion

 There is a 2-approximation for 

unweighted TAP in 𝑶(𝒉) rounds, 

where ℎ = height of 𝑇.

 What about the weighted case?
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Weighted TAP
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Problem: 

how to compare 

edges?
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Weighted TAP
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Solution:

sending edges 

with reduced 

weights
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Weighted TAP
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Conclusion

 There is a 2-approximation for 

weighted TAP in 𝑶(𝒉) rounds, 

where ℎ = height of 𝑇.
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Is This Optimal?

33

 TAP is a global problem which requires 

𝜴(𝑫) rounds, where 𝐷 = diameter of 𝐺

 If ℎ = 𝑂(𝐷) our algorithms are optimal 

up to a constant factor
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What about the case ℎ = 𝜔(𝐷)?

 We show an 𝜴(𝒉)
lower bound for 

weighted TAP when 

𝐷 ≈ log 𝑛, ℎ ≈ 𝑛

𝑟
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What about the case ℎ = 𝜔(𝐷)?

 We show a 4-approximation for 

unweighted TAP in  𝑶( 𝒏 + 𝑫) rounds



Main Results

 2-approximation for unweighted or weighted 

TAP in 𝑶(𝒉) rounds, where ℎ = height of 𝑇

 4-approximation for unweighted TAP in 
 𝑶( 𝒏 + 𝑫) rounds, where 𝐷 = diameter of 𝐺

 𝜴 𝑫 lower bound

 𝜴(𝒉) lower bound for weighted TAP when 

𝐷 ≈ log 𝑛, ℎ ≈ 𝑛
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Application: minimum size 2-Edge-

Connected Subgraph (2-ECSS)

 Goal: find the minimum size 2-ECSS 

 No spanning tree is given
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Application: minimum size 2-Edge-

Connected Subgraph (2-ECSS)

Previous algorithms:



3

2
-approximation in 𝑂(𝑛) rounds [Krumke et al. 07]

 2-approximation in  𝑂(𝐷+ 𝑛) rounds [Thurimella 95]
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Application: minimum size 2-Edge-

Connected Subgraph (2-ECSS)

Previous algorithms:



3

2
-approximation in 𝑂(𝑛) rounds [Krumke et al. 07]

 2-approximation in  𝑂(𝐷+ 𝑛) rounds [Thurimella 95]

Using our TAP algorithm:

 2-approximation in 𝑂(𝐷) rounds
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Application: minimum weight 2-

Edge-Connected Subgraph (2-ECSS)

Previous algorithms:

 3-approximation in 𝑂(𝑛log 𝑛) rounds 

[Krumke et al. 07]

Using our TAP algorithm:

 3-approximation in  𝑂(ℎ𝑀𝑆𝑇 + 𝑛) rounds

 Lower bound of  Ω(𝐷 + 𝑛) rounds for any 

polynomial approximation 
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Future Work

 Design efficient algorithms for 

weighted TAP and weighted 2-ECSS.

 Design distributed algorithms for 

additional connectivity problems:

• Higher connectivity

• Vertex connectivity
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