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Consider a Communication
Network
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We can communicate over a
spanning tree




There are many constructions of
minimum spanning trees (MST)

[Gallager, Humblet and Spira 83, Kutten and
Peleg 95, Garay, Kutten and Peleg 98,
Pandurangan, Robinson and Scquizzato 17,
Elkin 17,...]
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The Tree Augmentation Problem (TAP)

Input:
a graph G
a spanning tree T

Goal:
augment T to be
2-edge-connected
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The Tree Augmentation Problem (TAP)

» A central problem in network design
» Has many sequential algorithms:

[Frederickson and JaJa 81, Khuller and
Thurimella 93, Goemans et al. 94, Jain 01,
Kortsarz and Nutov 16, Adjiashvili 17...].

» Goal: solve TAP in the distributed setting.



The CONGEST model

» Communication network
with n processors

» Synchronous rounds
» Messages of O(logn) bits
» Time = number of rounds

» The input and output are
local
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Sequential Approximation for TAP
[Khuller and Thurimella 93]

» Builds a new virtual graph G’
» Finds a directed MST in ¢’
» This gives a 2-approximation in G
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The Graph G’

» All the non-tree edges in G’ are between
ancestors to descendants:
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The Graph G’

» The corresponding edges in G' cover
exactly the same tree edges:

The input graph G A virtual graph G’




The Graph G’

» We can build G' in O(h) rounds using LCA
labels of O(logn) bits [Alstrup et al. 2004]

The input graph G A virtual graph G’




Distributed Approximation for TAP

The input graph G A virtual graph G’

2-approximation in ¢ Optimal solution in G’




Finding an Optimal Augmentation in G’
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Conclusion

» There is a 2-approximation for
unweighted TAP in O(h) rounds,
where h = height of T.

» What about the weighted case?




Weighted TAP

Problem:

how to compare
edges?
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Conclusion

» There is a 2-approximation for
weighted TAP in O(h) rounds,
where h = height of T.




Is This Optimal?

» TAP is a global problem which requires
(D) rounds, where D = diameter of G

» If h = O(D) our algorithms are optimal
up to a constant factor




What about the case h = w(D)?

» We show an 2(h)
lower bound for
weighted TAP when
D =~logn, h =+n




What about the case h = w(D)?

» We show a 4-approximation for
unweighted TAP in O(y/n + D) rounds




Main Results

» 2-approximation for unweighted or weighted
TAP in O(h) rounds, where h = height of T

» 4-approximation for unweighted TAP in
O0(y/n + D) rounds, where D = diameter of G

» (D) lower bound

» 2(h) lower bound for weighted TAP when
D =~logn, h =+\n




Application: minimum size 2-Edge-
Connected Subgraph (2-ECSS)

» Goal: find the minimum size 2-ECSS
» No spanning tree is given
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Application: minimum size 2-Edge-
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Previous algorithms:

> %-approximation in O(n) rounds [Krumke et al. 07]

» 2-approximation in O(D++/n) rounds [Thurimella 95]

Using our TAP algorithm:

» 2-approximation in O(D) rounds




Application: minimum weight 2-
Edge-Connected Subgraph (2-ECSS)

Previous algorithms:

» 3-approximation in O(nlogn) rounds
[Krumke et al. 07]

Using our TAP algorithm:

» 3-approximation in O(hysr + /1) rounds

» Lower bound of Q(D + +/n) rounds for any
polynomial approximation




Future Work

» Design efficient algorithms for
weighted TAP and weighted 2-ECSS.

» Design distributed algorithms for
additional connectivity problems:

- Higher connectivity
- Vertex connectivity




