Broadcasting in an Unreliable SINR Model

Albert-Ludwigs-Universität Freiburg

Philipp Schneider and Fabian Kuhn

University of Freiburg

The Model

The Problem

The Results

The Algorithm

Signal Propagation in the SINR Model

Signal with transmission power *P* fades with distance from source.

Signal Propagation in the SINR Model

Signal with transmission power *P* fades with distance from source.

Signal to Interference and Noise Ratio - Model

Nodes V embedded to *metric space* (X,d). Time proceeds in *rounds*. Nodes *either send or listen*. Set of *interfering nodes I*.

Nodes V embedded to *metric space* (X,d). Time proceeds in *rounds*. Nodes *either send or listen*. Set of *interfering nodes I*. **SINP parameters:** *Power P. Noise N. Path loss exponent G. Thresh*

SINR parameters: *Power P*, *Noise N*, *Path loss exponent* α , *Threshold* β .

SINR
$$(u, v, I) := \frac{P/d(u, v)^{\alpha}}{N + \sum_{w \in I} P/d(w, v)^{\alpha}} \ge \beta$$

(((•))

SINR parameters: *Power P*, *Noise N*, *Path loss exponent* α , *Threshold* β .

$$\operatorname{SINR}(u,v,I) := \frac{P/d(u,v)^{\alpha}}{N + \sum_{w \in I} P/d(w,v)^{\alpha}} \ge \beta$$

(((•))

SINR parameters: Power P, Noise N, Path loss exponent α , Threshold β .

SINR
$$(u, v, I) := \frac{P/d(u, v)^{\alpha}}{N + \sum_{w \in I} P/d(w, v)^{\alpha}} \ge \beta$$

(((•))

SINR parameters: *Power P*, *Noise N*, *Path loss exponent* α , *Threshold* β .

SINR
$$(u, v, I) := \frac{P/d(u, v)^{\alpha}}{N + \sum_{w \in I} P/d(w, v)^{\alpha}} \ge \beta$$

(((•))

Nodes V embedded to *metric space* (X,d). Time proceeds in *rounds*. Nodes *either send or listen*. Set of *interfering nodes I*. **SINR parameters:** *Power P*, *Noise N*, *Path loss exponent* α , *Threshold* β .

$$\operatorname{SINR}(u,v,I) := \frac{P/d(u,v)^{\alpha}}{N + \sum_{w \in I} P/d(w,v)^{\alpha}} \ge \beta$$

Nodes V embedded to *metric space* (X,d). Time proceeds in *rounds*. Nodes *either send or listen*. Set of *interfering nodes I*. **SINR parameters:** *Power P*, *Noise N*, *Path loss exponent* α , *Threshold* β .

 $\operatorname{SINR}(u,v,I) := \frac{P/d(u,v)^{\alpha}}{N + \sum_{w \in I} P/d(w,v)^{\alpha}} \ge \beta$

(((•)))

Nodes V embedded to *metric space* (X,d). Time proceeds in *rounds*. Nodes *either send or listen*. Set of *interfering nodes I*. **SINR parameters:** *Power P*, *Noise N*, *Path loss exponent* α , *Threshold* β .

 $\operatorname{SINR}(u,v,I) := \frac{P/d(u,v)^{\alpha}}{N + \sum_{w \in I} P/d(w,v)^{\alpha}} \ge \beta$

SINR parameters: *Power P*, *Noise N*, *Path loss exponent* α , *Threshold* β .

$$\operatorname{SINR}(u,v,I) := \frac{P/d(u,v)^{\alpha}}{N + \sum_{w \in I} P/d(w,v)^{\alpha}} < \beta$$

SINR parameters: *Power P*, *Noise N*, *Path loss exponent* α , *Threshold* β .

$$\operatorname{SINR}(u,v,I) := \frac{P/d(u,v)^{\alpha}}{N + \sum_{w \in I} P/d(w,v)^{\alpha}} \ge \beta$$

Modeling Choices

Minimal assumptions:

- No geometric information.
- No power control.
- No additional capabilities (e.g. carrier sensing).

Silent node v receives transmission from sender u if and only if

$$\operatorname{SINR}(u,v,I) := \frac{P/d(u,v)^{\alpha}}{N + \sum_{w \in I} P/d(w,v)^{\alpha}} \ge \beta_{v}$$

Adversary chooses $\beta_{\nu} \in [\beta_{\min}, \beta_{\max}]$ for each transmission.

$$\operatorname{SINR}(u,v,I) := \frac{P/d(u,v)^{\alpha}}{N + \sum_{w \in I} P/d(w,v)^{\alpha}} \ge \beta_{\max}$$

$$\operatorname{SINR}(u, v, I) := \frac{P/d(u, v)^{\alpha}}{N + \sum_{w \in I} P/d(w, v)^{\alpha}} < \beta_{\min}$$

No Transmission!

$$SINR(u,v,I) := \frac{P/d(u,v)^{\alpha}}{N + \sum_{w \in I} P/d(w,v)^{\alpha}} \in [\beta_{\min}, \beta_{\max})$$

Adversary decides!

In standard SINR models message reception is subject to a deterministic function.

- Real wireless transmission is *inherently unstable and unreliable*.
- Adversary adds a *dynamic* component.
- The proposed adversarial model captures a seemingly stronger adversary that manipulates *all* SINR-parameters (P, N, α, β) .

The Model

The Problem

The Results

The Algorithm

Broadcast Problem

Broadcast is solved when message M is disseminated from a distinguished source node to all other nodes in V.

UNI FREIBURG

Broadcast Problem

Broadcast is solved when message M is disseminated from a distinguished source node to all other nodes in V.

Neighborhood Dissemination Problem

Neighborhood dissemination is solved when \mathcal{M} is disseminated from $S \subseteq V$ to their Neighbors N(S) in the *communication graph* G_C .

BURG

Broadcast Problem

Broadcast is solved when message M is disseminated from a distinguished source node to all other nodes in V.

Neighborhood Dissemination Problem

Neighborhood dissemination is solved when \mathcal{M} is disseminated from $S \subseteq V$ to their Neighbors N(S) in the *communication graph* G_C .

Communication graph

 $G_C := (V, \{\{u, v\} | u, v \in V, u \neq v, d(u, v) \leq r_e\})$. Defined by the set of edges among nodes within *effective communication range* r_e of each other.

Broadcast Problem

Broadcast is solved when message M is disseminated from a distinguished source node to all other nodes in V.

Neighborhood Dissemination Problem

Neighborhood dissemination is solved when \mathcal{M} is disseminated from $S \subseteq V$ to their Neighbors N(S) in the *communication graph* G_C .

Communication graph

 $G_C := (V, \{\{u, v\} | u, v \in V, u \neq v, d(u, v) \leq r_e\})$. Defined by the set of edges among nodes within *effective communication range* r_e of each other.

Observation: *Global Broadcast* can be solved by solving *Neighborhood Dissemination* D times where D is the *diameter* of G_C .

We want a robust randomized algorithm to solve broadcast, that works

- ... with high probability (w.h.p.), that is with probability at least $1-\frac{1}{n^c}$, for constant *c* and n := |V|.
- ... for *any strategy* of the adversary.

The Model

The Problem

The Results

The Algorithm

Paper	Model	Broadcast
Daum et al., 2013	Reliable SINR	$\mathcal{O}(D \cdot \log n \cdot \log^* n \cdot \operatorname{polylog} R)$
Jurdzinski et al., 2014	Reliable SINR	$\mathcal{O}(D \cdot \log^2 n)$
Halldórsson et al., 2015	Reliable SINR	$\mathcal{O}((D + \log n) \cdot \operatorname{polylog} R)$
This paper	Unreliable SINR	$\mathcal{O}\big(\frac{\beta_{\max}}{\beta_{\min}} \cdot D \cdot \log n \cdot \log^* n \cdot \operatorname{polylog} R\big)$

R is the **Ratio** between the length of the *longest and shortest edge* in G_C .

The Model

The Problem

The Results

The Algorithm

Lemma [cf. Daum et al., 2013]: Nodes $S \subseteq V$ send with probability p. If nodes $u \in S, v \in V$ are closer than a constant multiple of d_{\min}^S and are in safe transmission range r_s of each other then a safe transmission from u to v takes place with *constant* probability $\mu \in (0, p)$.

Communication Among Relatively Close Nodes

Lemma [cf. Daum et al., 2013]: Nodes $S \subseteq V$ send with probability p. If nodes $u \in S, v \in V$ are closer than a constant multiple of d_{\min}^S and are in safe transmission range r_s of each other then a safe transmission from u to v takes place with *constant* probability $\mu \in (0, p)$.

66

Communication Among Relatively Close Nodes

Lemma [cf. Daum et al., 2013]: Nodes $S \subseteq V$ send with probability p. If nodes $u \in S, v \in V$ are closer than a constant multiple of d_{\min}^S and are in safe transmission range r_s of each other then a safe transmission from u to v takes place with *constant* probability $\mu \in (0, p)$.

22

Communication Among Relatively Close Nodes

Lemma [cf. Daum et al., 2013]: Nodes $S \subseteq V$ send with probability p. If nodes $u \in S, v \in V$ are closer than a constant multiple of d_{\min}^S and are in safe transmission range r_s of each other then a safe transmission from u to v takes place with *constant* probability $\mu \in (0, p)$.

Algorithm RobustDissemination	
For phase $\phi = 1$ to $\Theta(\log R)$ do:	
II S_{ϕ} sends with prob. $\frac{p}{Q}$ for $\mathcal{O}(Q\log n)$ rounds	$(S_1 := S)$
2 Determine DIS $S_{\phi+1}$ of $H[S_{\phi}]$	$(S_{\phi+1} \subseteq S_{\phi})$

Neighborhood Dissemination Algorithm		BURG
		ZW
Algorithm RobustDissemination		76
For phase $\phi = 1$ to $\Theta(\log R)$ do:		
I S_{ϕ} sends with prob. $\frac{p}{Q}$ for $\mathcal{O}(Q\log n)$ rounds	$(S_1 := S)$	
2 Determine DIS $S_{\phi+1}$ of $H[S_{\phi}]$	$(S_{\phi+1} \subseteq S_{\phi})$	

Algorithm proceeds in phases.

- Algorithm proceeds in phases.
- S_{ϕ} tries to disseminate \mathcal{M} .

BURG

Neighborhood Dissemination Algorithm		BURG
	Z	R
Algorithm RobustDissemination	ر	
For phase $\phi = 1$ to $\Theta(\log R)$ do:		
$\blacksquare S_{\phi} \text{ sends with prob. } \frac{p}{Q} \text{ for } \mathcal{O}(Q \log n) \text{ rounds} $	$S_1 := S$)	
2 Determine DIS $S_{\phi+1}$ of $H[S_{\phi}]$ ($S_{\phi+1}$	$-1 \subseteq S_{\phi}$)	

- Algorithm proceeds in phases.
- S_{ϕ} tries to disseminate \mathcal{M} .
- $S_{\phi+1} \subseteq S_{\phi}$ is 'thinned out'.

Algorithm RobustDissemination

For phase $\phi = 1$ to $\Theta(\log R)$ do:

- **I** S_{ϕ} sends with prob. $\frac{p}{Q}$ for $\mathcal{O}(Q\log n)$ rounds
- Determine DIS $S_{\phi+1}$ of $H[S_{\phi}]$
- Algorithm proceeds in phases.
- S_{ϕ} tries to disseminate \mathcal{M} .
- $S_{\phi+1} \subseteq S_{\phi}$ is 'thinned out'.
- **Property:** Nodes in N(S) that did not yet receive \mathcal{M} still have a close neighbor in S_{ϕ} .

 $(S_1 := S)$

 $(S_{\phi+1} \subseteq S_{\phi})$

URG

a

Neighborhood Dissemination Algorithm

Algorithm RobustDissemination

- For phase $\phi = 1$ to $\Theta(\log R)$ do:
 - **I** S_{ϕ} sends with prob. $\frac{p}{Q}$ for $\mathcal{O}(Q\log n)$ rounds
 - 2 Determine DIS $S_{\phi+1}$ of $H[S_{\phi}]$
 - Algorithm proceeds in phases.
 - S_{ϕ} tries to disseminate \mathcal{M} .
- $S_{\phi+1} \subseteq S_{\phi}$ is 'thinned out'.
- **Property:** Nodes in N(S) that did not yet receive \mathcal{M} still have a close neighbor in S_{ϕ} .

SINR-induced graph $H[S_{\phi}]$ contains short edges among nodes S_{ϕ} .

Algorithm RobustDissemination

- For phase $\phi = 1$ to $\Theta(\log R)$ do:
 - **I** S_{ϕ} sends with prob. $\frac{p}{Q}$ for $\mathcal{O}(Q\log n)$ rounds
 - Determine DIS $S_{\phi+1}$ of $H[S_{\phi}]$
 - Algorithm proceeds in phases.
 - S_{ϕ} tries to disseminate \mathcal{M} .
- $S_{\phi+1} \subseteq S_{\phi}$ is 'thinned out'.
- **Property:** Nodes in N(S) that did not yet receive \mathcal{M} still have a close neighbor in S_{ϕ} .

- *SINR-induced graph* $H[S_{\phi}]$ contains short edges among nodes S_{ϕ} .
- Compute Dominating Independet Set.

$$(S_1 := S)$$
$$(S_{4+1} \subseteq S_4)$$

$$(S_1 := S)$$

URG

a

Algorithm RobustDissemination

- For phase $\phi = 1$ to $\Theta(\log R)$ do:
 - **I** S_{ϕ} sends with prob. $\frac{p}{Q}$ for $\mathcal{O}(Q\log n)$ rounds
 - 2 Determine DIS $S_{\phi+1}$ of $H[S_{\phi}]$
 - Algorithm proceeds in phases.
 - S_{ϕ} tries to disseminate \mathcal{M} .
- $S_{\phi+1} \subseteq S_{\phi}$ is 'thinned out'.
- **Property:** Nodes in N(S) that did not yet receive \mathcal{M} still have a close neighbor in S_{ϕ} .

- SINR-induced graph $H[S_{\phi}]$ contains short edges among nodes S_{ϕ} .
- Compute *Dominating Independet Set*.
- $d_{\min}^{S_{\phi}}$ doubles each phase.

Algorithm RobustDissemination

- For phase $\phi = 1$ to $\Theta(\log R)$ do:
 - **I** S_{ϕ} sends with prob. $\frac{p}{Q}$ for $\mathcal{O}(Q\log n)$ rounds
 - 2 Determine DIS $S_{\phi+1}$ of $H[S_{\phi}]$
 - Algorithm proceeds in phases.
 - S_{ϕ} tries to disseminate \mathcal{M} .
- $S_{\phi+1} \subseteq S_{\phi}$ is 'thinned out'.
- **Property:** Nodes in N(S) that did not yet receive \mathcal{M} still have a close neighbor in S_{ϕ} .

- SINR-induced graph $H[S_{\phi}]$ contains short edges among nodes S_{ϕ} .
- Compute *Dominating Independet Set*.
- $d_{\min}^{S_{\phi}}$ doubles each phase.
- In final phase ψ : $d_{\min}^{S_{\psi}}$ is large.

BURG

Neighborhood Dissemination Algorithm

Algorithm RobustDissemination

- For phase $\phi = 1$ to $\Theta(\log R)$ do:
 - **I** S_{ϕ} sends with prob. $\frac{p}{Q}$ for $\mathcal{O}(Q\log n)$ rounds
 - 2 Determine DIS $S_{\phi+1}$ of $H[S_{\phi}]$
 - Algorithm proceeds in phases.
 - S_{ϕ} tries to disseminate \mathcal{M} .
- $S_{\phi+1} \subseteq S_{\phi}$ is 'thinned out'.
- **Property:** Nodes in N(S) that did not yet receive \mathcal{M} still have a close neighbor in S_{ϕ} .

- SINR-induced graph $H[S_{\phi}]$ contains short edges among nodes S_{ϕ} .
- Compute *Dominating Independet Set*.
- $d_{\min}^{S_{\phi}}$ doubles each phase.
- In final phase ψ : $d_{\min}^{S_{\psi}}$ is large.
- **Lemma**: Neighbors of S_{ψ} receive \mathcal{M} .

 $S \subseteq V$: sending with probability p. H[S] has **nodes** S and **reliable edges** E[S]. E[S] contains (u, v) iff **v** receives message from **u** with probability $\geq \mu$.

iBURG

 $S \subseteq V$: sending with probability *p*. H[S] has **nodes** *S* and **reliable edges** E[S]. E[S] contains (u, v) iff **v** receives message from **u** with probability $\geq \mu$.

Previous Lemma: Choose μ such that *short edges* $(d(u, v) \leq 2d_{\min}^S)$ are in E[S].

BUR

 $S \subseteq V$: sending with probability *p*. H[S] has **nodes** *S* and **reliable edges** E[S]. E[S] contains (u, v) iff **v** receives message from **u** with probability $\geq \mu$.

Previous Lemma: Choose μ such that *short edges* $(d(u, v) \le 2d_{\min}^S)$ are in E[S]. **Constant degree** of $\Delta \le 1/\mu$.

Ř

$$\sigma_{u,v} := \mathbb{P}\big(SINR(u,v,I) \geq \beta_{\max}\big) \quad \tau_{u,v} := \mathbb{P}\big(SINR(u,v,I) \geq \beta_{\min}\big).$$

$$\sigma_{u,v} := \mathbb{P}\big(SINR(u,v,I) \ge \beta_{\max}\big) \quad \tau_{u,v} := \mathbb{P}\big(SINR(u,v,I) \ge \beta_{\min}\big)$$

■ H[S] contains all μ -safe edges

$$\sigma_{u,v} := \mathbb{P}\big(SINR(u,v,I) \ge \beta_{\max}\big) \quad \tau_{u,v} := \mathbb{P}\big(SINR(u,v,I) \ge \beta_{\min}\big)$$

- H[S] contains all μ -safe edges
- H[S] may contain μ -unsafe edges (adversary decides)

IBURG

$$\sigma_{u,v} := \mathbb{P}\big(SINR(u,v,I) \ge \beta_{\max}\big) \quad \tau_{u,v} := \mathbb{P}\big(SINR(u,v,I) \ge \beta_{\min}\big)$$

- H[S] contains all μ -safe edges
- H[S] may contain μ -unsafe edges (adversary decides)
- H[S] does not contain any other edges

BURG

SINR-Induced Graphs - Computation

- \blacksquare H[S] cannot be pre-computed due to the adversary.
- Instead provide **sub-procedure** TRANSMIT that nodes in *S* execute.
- For pair $u, v \in S$ participating in TRANSMIT:
 - If $\{u, v\}$ is μ -safe: Message transmitted.
 - If (u, v) is μ -unsafe: Adversary decides.
 - Otherwise: Message not transmitted.
- **Edges along which transmission takes place induce** H[S].
- **TRANSMIT probes edges** by sending with prob. p for $O(\log n)$ rounds.
- TRANSMIT allows transmission if sufficiently many probes were successful.

BURG

Dominating Independent Set (DIS) [Censor-Hillel et al., 2014]

Let G = (V, E, E') be a graph with disjoint edge sets E and E'. A *DIS* $D \subseteq V$ of *G* is *independent* w.r.t. *E* and *dominating* w.r.t. $E \cup E'$.

Independent Set: Let G = (V, E) be a graph. *Ind* $\subseteq V$ of *G* is *independent* if for all $u, v \in Ind$ there is **no** edge $\{u, v\} \in E$.

Dominating Set: Let G = (V, E') be a graph. *Dom* $\subseteq V$ of *G* is *dominating* if for all $v \in V \setminus Dom$ there is a node $u \in Dom$ and an edge $(u, v) \in E'$.

Edges E[S] of H[S] can be partitioned into

- $E_{\text{safe}}[S] : \mu$ -safe edges
- $E_{\text{unsafe}}[S] : \mu$ -unsafe edges.

- Combine algorithm by [Linial, 1992] with TRANSMIT: Obtain $\mathcal{O}(1)$ -coloring w.r.t. $E_{\text{safe}}[S]$ in $\mathcal{O}(\log n \log^* n)$ rounds.
- 2 For each color do
 - 3 Active nodes of current color join DIS ...
 - 4 ... and deactivate their neighbors via TRANSMIT in $\mathcal{O}(\log n)$.

Edges E[S] of H[S] can be partitioned into

- $E_{\text{safe}}[S] : \mu$ -safe edges
- $E_{\text{unsafe}}[S] : \mu$ -unsafe edges.

- Combine algorithm by [Linial, 1992] with TRANSMIT: Obtain $\mathcal{O}(1)$ -coloring w.r.t. $E_{\text{safe}}[S]$ in $\mathcal{O}(\log n \log^* n)$ rounds.
- 2 For each color do
 - 3 Active nodes of current color join DIS ...
 - 4 ... and deactivate their neighbors via TRANSMIT in $\mathcal{O}(\log n)$.

Edges E[S] of H[S] can be partitioned into

- $E_{\text{safe}}[S] : \mu$ -safe edges
- $E_{\text{unsafe}}[S] : \mu$ -unsafe edges.

- Combine algorithm by [Linial, 1992] with TRANSMIT: Obtain $\mathcal{O}(1)$ -coloring w.r.t. $E_{\text{safe}}[S]$ in $\mathcal{O}(\log n \log^* n)$ rounds.
- 2 For each color do
 - 3 Active nodes of current color join DIS ...
 - 4 ... and deactivate their neighbors via TRANSMIT in $\mathcal{O}(\log n)$.

Edges E[S] of H[S] can be partitioned into

- $E_{\text{safe}}[S] : \mu$ -safe edges
- $E_{\text{unsafe}}[S] : \mu$ -unsafe edges.

- Combine algorithm by [Linial, 1992] with TRANSMIT: Obtain $\mathcal{O}(1)$ -coloring w.r.t. $E_{\text{safe}}[S]$ in $\mathcal{O}(\log n \log^* n)$ rounds.
- 2 For each color do
 - 3 Active nodes of current color join DIS ...
 - 4 ... and deactivate their neighbors via TRANSMIT in $\mathcal{O}(\log n)$.

Edges E[S] of H[S] can be partitioned into

- $E_{\text{safe}}[S] : \mu$ -safe edges
- $E_{\text{unsafe}}[S] : \mu$ -unsafe edges.

Algorithms COMPUTEDIS $(S, E_{safe}[S], E_{unsafe}[S])$

- Combine algorithm by [Linial, 1992] with TRANSMIT: Obtain $\mathcal{O}(1)$ -coloring w.r.t. $E_{\text{safe}}[S]$ in $\mathcal{O}(\log n \log^* n)$ rounds.
- 2 For each color do
 - 3 Active nodes of current color join DIS ...
 - 4 ... and deactivate their neighbors via TRANSMIT in $\mathcal{O}(\log n)$.

Neighbors w.r.t. $E_{safe}[S]$ are differently colored \Rightarrow **Independence w.r.t.** $E_{safe}[S]$.

BURG

Edges E[S] of H[S] can be partitioned into

- $E_{\text{safe}}[S] : \mu$ -safe edges
- $E_{\text{unsafe}}[S] : \mu$ -unsafe edges.

Algorithms COMPUTEDIS $(S, E_{safe}[S], E_{unsafe}[S])$

- Combine algorithm by [Linial, 1992] with TRANSMIT: Obtain $\mathcal{O}(1)$ -coloring w.r.t. $E_{\text{safe}}[S]$ in $\mathcal{O}(\log n \log^* n)$ rounds.
- 2 For each color do
 - 3 Active nodes of current color join DIS ...
 - 4 ... and deactivate their neighbors via TRANSMIT in $\mathcal{O}(\log n)$.

Neighbors w.r.t. $E_{\text{safe}}[S]$ are differently colored \Rightarrow **Independence w.r.t.** $E_{\text{safe}}[S]$. Node deactivated via TRANSMIT \Rightarrow **Node dominated w.r.t.** $E_{\text{safe}}[S] \cup E_{\text{unsafe}}[S]$.

BURG

yet,

Algorithm RobustDissemination

For phase $\phi = 1$ to $\Theta(\log R)$ do:

- S_{ϕ} sends with prob. $\frac{p}{Q}$ for $\mathcal{O}(Q\log n)$ rounds $\mathcal{O}(\log n \cdot \operatorname{polylog}(R) \cdot \frac{\beta_{\max}}{\beta})$
- Determine DIS $S_{\phi+1}$ of $H[S_{\phi}]$

Property 1: There exists
$$Q$$
 such that nodes in $N(S)$ that did not receive \mathcal{M} yet, still have a neighbor in S_{ϕ} .
 $Q \in \mathcal{O}(\text{polylog } R \cdot \frac{\beta_{\text{max}}}{\beta_{\text{min}}})$

Property 2: In final phase ψ remaining active nodes S_{ψ} are 'sparse' \Rightarrow all neighbors of S_{ψ} receive \mathcal{M} (Lemma).

BURG

 $\mathcal{O}(\operatorname{polylog} n)$

Algorithm RobustDissemination

For phase $\phi = 1$ to $\Theta(\log R)$ do:

- **I** S_{ϕ} sends with prob. $\frac{p}{Q}$ for $\mathcal{O}(Q \log n)$ rounds $\mathcal{O}(\log n \cdot \operatorname{polylog}(R) \cdot \frac{\beta_{\max}}{\beta_{\min}})$
- 2 Determine DIS $S_{\phi+1}$ of $H[S_{\phi}]$

Property 1: There exists Q such that nodes in N(S) that did not receive \mathcal{M} yet, still have a neighbor in S_{ϕ} . **Property 2**: In final phase ψ remaining active nodes S_{ψ} are 'sparse'

 \Rightarrow all neighbors of S_{ψ} receive \mathcal{M} (Lemma).

) rounds $\mathcal{O}(\log n \cdot \operatorname{polylog}(R) \cdot \frac{m_{max}}{\beta_{\min}})$ $\mathcal{O}(\operatorname{polylog} n)$

Algorithm RobustDissemination

For phase $\phi = 1$ to $\Theta(\log R)$ do:

- $\blacksquare S_{\phi} \text{ sends with prob. } \frac{p}{Q} \text{ for } \mathcal{O}(Q \log n) \text{ rounds } \mathcal{O}(\log n \cdot \operatorname{polylog}(R) \cdot \frac{\beta_{\max}}{\beta_{\min}})$
- 2 Determine DIS $S_{\phi+1}$ of $H[S_{\phi}]$

Property 1: There exists Q such that nodes in N(S) that did not receive \mathcal{M} yet, still have a neighbor in S_{ϕ} . **Property 2**: In final phase ψ remaining active nodes S_{ψ} are 'sparse'

 \Rightarrow all neighbors of S_{ψ} receive \mathcal{M} (Lemma).

 $\mathcal{O}(\operatorname{polylog} n)$

Algorithm RobustDissemination

For phase $\phi = 1$ to $\Theta(\log R)$ do:

- $\blacksquare S_{\phi} \text{ sends with prob. } \frac{p}{Q} \text{ for } \mathcal{O}(Q \log n) \text{ rounds } \mathcal{O}(\log n \cdot \operatorname{polylog}(R) \cdot \frac{\beta_{\max}}{\beta_{\min}})$
- 2 Determine DIS $S_{\phi+1}$ of $H[S_{\phi}]$

$$\mathcal{O}(\operatorname{polylog} n)$$

Property 1: There exists Q such that nodes in N(S) that did not receive \mathcal{M} yet, still have a neighbor in S_{ϕ} . **Property 2**: In final phase ψ remaining active nodes S_{ψ} are 'sparse'

 \Rightarrow all neighbors of S_{Ψ} receive \mathcal{M} (Lemma).

BURG

y

Algorithm RobustDissemination

For phase $\phi = 1$ to $\Theta(\log R)$ do:

- $\blacksquare S_{\phi} \text{ sends with prob. } \frac{p}{Q} \text{ for } \mathcal{O}(Q\log n) \text{ rounds } \mathcal{O}(\log n \cdot \operatorname{polylog}(R) \cdot \frac{\beta_{\max}}{\beta_{\min}})$
- 2 Determine DIS $S_{\phi+1}$ of $H[S_{\phi}]$

Property 1: There exists
$$Q$$
 such that nodes in $N(S)$ that did not receive \mathcal{M} vet, still have a neighbor in S_{ϕ} .
Property 2: In final phase ψ remaining active nodes S_{ψ} are 'sparse'

 \Rightarrow all neighbors of S_{ψ} receive \mathcal{M} (Lemma).

iBURG

 $\mathcal{O}(\operatorname{polylog} n)$

Algorithm RobustDissemination

For phase $\phi = 1$ to $\Theta(\log R)$ do:

- $\blacksquare S_{\phi} \text{ sends with prob. } \frac{p}{Q} \text{ for } \mathcal{O}(Q \log n) \text{ rounds } \mathcal{O}(\log n \cdot \operatorname{polylog}(R) \cdot \frac{\beta_{\max}}{\beta_{\min}})$
- 2 Determine DIS $S_{\phi+1}$ of $H[S_{\phi}]$

$$\mathcal{O}(\operatorname{polylog} n)$$

Property 1: There exists Q such that nodes in N(S) that did not receive \mathcal{M} yet, still have a neighbor in S_{ϕ} . **Property 2**: In final phase ψ remaining active nodes S_{ψ} are 'sparse' \Rightarrow all neighbors of S_{ψ} receive \mathcal{M} (Lemma).

 $\Rightarrow \mathcal{O}\left(\operatorname{polylog}(n+R) \cdot \frac{\beta_{\max}}{\beta_{\min}}\right) \text{ rounds to solve neighborhood dissemination.}$

BURG

Algorithm RobustDissemination

For phase $\phi = 1$ to $\Theta(\log R)$ do:

- $\blacksquare S_{\phi} \text{ sends with prob. } \frac{p}{Q} \text{ for } \mathcal{O}(Q \log n) \text{ rounds } \mathcal{O}(\log n \cdot \operatorname{polylog}(R) \cdot \frac{\beta_{\max}}{\beta_{\min}})$
- 2 Determine DIS $S_{\phi+1}$ of $H[S_{\phi}]$

$$\mathcal{O}(\operatorname{polylog} n)$$

Property 1: There exists Q such that nodes in N(S) that did not receive \mathcal{M} yet, still have a neighbor in S_{ϕ} . **Property 2**: In final phase ψ remaining active nodes S_{ψ} are 'sparse'

 \Rightarrow all neighbors of S_{ψ} receive \mathcal{M} (Lemma).

 $\Rightarrow \mathcal{O}\left(\operatorname{polylog}(n+R) \cdot \frac{\beta_{\max}}{\beta_{\min}}\right) \text{ rounds to solve neighborhood dissemination.} \\\Rightarrow \mathcal{O}\left(D \cdot \operatorname{polylog}(n+R) \cdot \frac{\beta_{\max}}{\beta_{\min}}\right) \text{ rounds to solve broadcast in the Unreliable Model.}$

Thank you.

References I

١

١

- Censor-Hillel, K. et al. (2014). "Structuring unreliable radio networks". In: *Distributed Computing* 27.1.
- Daum, S. et al. (2013). "Broadcast in the Ad Hoc SINR Model". In:
 - Proceedings of the 27th International Symposium on Distributed Computing. DISC '13. Jerusalem, Israel: Springer-Verlag.
- Erdös, P., P. Frankl und Z. Füredi (1985). "Families of finite sets in which no set is covered by the union of r others". In: *Israel Journal of Mathematics* 51.1.
- Halldórsson, M. M., S. Holzer und N. Lynch (2015). "A Local
 Broadcast Layer for the SINR Network Model". In: *Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing*.
 PODC '15. Donostia-San Sebastián, Spain: ACM.

References II

Jurdzinski, T. et al. (2014). "On the impact of geometry on ad hoc communication in wireless networks". In: *Proceedings of the 2014 ACM Symposium on Principles of Distributed Computing*. PODC '14. ACM.

Linial, N. (1992). "Locality in Distributed Graph Algorithms". In: *SIAM J. Comput.* 21.1.