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Signal Propagation in the SINR Model
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Signal with transmission power P fades with distance from source.
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Signal to Interference and Noise Ratio - Model

Nodes V embedded to metric space (X,d). Time proceeds in rounds.

Nodes either send or listen. Set of interfering nodes I.
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Modeling Choices
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Minimal assumptions:
No geometric information.
No power control.

No additional capabilities (e.g. carrier sensing).
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Model Extension: Unreliable SINR Model
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Silent node v receives transmission from sender u if and only if

Py
SINRCw )= N Y Pl = P

Adversary chooses B, € [Bin, Bmax] for each transmission.
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Model Extension: Unreliable SINR Model
[a4]
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Model Extension: Unreliable SINR Model
[a4]

o P/d(u,v)* ‘
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Adversary decides!

6/24



Adversary Motivation
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In standard SINR models message reception is subject to a deterministic function.

Real wireless transmission is inherently unstable and unreliable.
Adversary adds a dynamic component.

The proposed adversarial model captures a seemingly stronger adversary that
manipulates all SINR-parameters (P, N, a, f3).
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Broadcast Problem

Broadcast is solved when message M is disseminated from a distinguished
source node to all other nodes in V.
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Broadcast Problem

Broadcast is solved when message M is disseminated from a distinguished
source node to all other nodes in V.

Neighborhood Dissemination Problem

Neighborhood dissemination is solved when M is disseminated from S C V
to their Neighbors N(S) in the communication graph Ge.

Communication graph

Ge := (V,{{u,v}|u,v € V,u# v,d(u,v) <r.}). Defined by the set of edges
among nodes within effective communication range r, of each other.

Observation: Global Broadcast can be solved by solving Neighborhood

Dissemination D times where D is the diameter of G¢.
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Solution Requirements
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We want a robust randomized algorithm to solve broadcast, that works

... with high probability (w.h.p.),
that is with probability at least 1 —-L, for constant ¢ and n := |V|.

... for any strategy of the adversary.
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The Results
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Previous Results and Our Result
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Paper Model Broadcast

Daum et al., 2013 Reliable SINR O(D-logn-log*n-polylogR)
Jurdzinski et al., 2014 Reliable SINR O(D-log?n)
Halldérsson et al., 2015 Reliable SINR O((D+1logn)-polylogR)
This paper Unreliable SINR O ( %“J -D-logn-log*n- polylogR)

R is the Ratio between the length of the longest and shortest edge in G¢.
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The Algorithm
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Communication Among Relatively Close Nodes
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Lemma [cf. Daum et al., 2013]: Nodes S C V send with probability p. If

nodes u € S,v € V are closer than a constant multiple of dfnin and are in safe

transmission range r, of each other then a safe transmission from u to v takes
place with constant probability u € (0, p).
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Neighborhood Dissemination Algorithm
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Algorithm RoBUSTDISSEMINATION

For phase ¢ = 1 to ®(logR) do:
Sy sends with prob. 5 for O(Qlogn) rounds S1:=9)
Determine DIS S| of H[S] (Sp+1 C Sp)
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Algorithm RoBUSTDISSEMINATION

For phase ¢ = 1 to ®(logR) do:

Sy sends with prob. 5 for O(Qlogn) rounds S1:=9)
Determine DIS S| of H[S] (Sp+1 C Sp)
Algorithm proceeds in phases. SINR-induced graph H|Sy] contains

Sy tries to disseminate M. short edges among nodes S .

Sp+1 C Sy is "thinned out’. Compute Dominating Independet Set.

S
Property: Nodes in N(S) that did dpyip, doubles each phase.
not yet receive M still have a close

Sy .
neighbor in . In final phase y: d_ ! is large.

Lemma: Neighbors of Sy, receive M.

15/24



SINR-Induced Graphs - Without Adversary

S C V: sending with probability p.
H|[S] has nodes S and reliable edges E[S].
E|[S] contains (u,v) iff v receives message from u with probability > p.

P(vy hears u) <p
P(vy hears u) >p (u,v2) & E[S]
(u,v1) € E[S]

./(«;))) e

U1
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Previous Lemma: Choose 1 such that short edges (d(u,v) <2d5. ) are in E[S].

16/24



SINR-Induced Graphs - Without Adversary

UNI

O
&
2
a
7]
o
[* 9

S C V: sending with probability p.
H|[S] has nodes S and reliable edges E[S].
E|[S] contains (u,v) iff v receives message from u with probability > p.

P(vy hears u) <p
P(vy hears u) >p (u,v2) & E[S]
(u,v1) € E[S]

./(«;))) e

U1

Previous Lemma: Choose 1 such that short edges (d(u,v) <2d5. ) are in E[S].
Constant degree of A < 1/u.
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SINR-Induced Graphs - With Adversary
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Ouy =P (SINR(u,v,I) > Brnax)  Tuy :=P(SINR(u,v,1) > Bryin)-
H|[S] contains all 11-safe edges
H{[S] may contain 1-unsafe edges (adversary decides)

H([S] does not contain any other edges

Ou,w > and Ovu >

v .\ Tuw 2> pb and
Tuw < H1 (((.))) (u,v) not p-safe
u
[
v

S e
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SINR-Induced Graphs - Computation
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H|[S] cannot be pre-computed due to the adversary.
Instead provide sub-procedure TrRansmiIT that nodes in S execute.
For pair u,v € S participating in TRANSMIT:

If {u,v} is u-safe: Message transmitted.
If (u,v) is p-unsafe: Adversary decides.
Otherwise: Message not transmitted.

= Edges along which transmission takes place induce H[S].
TransmiT probes edges by sending with prob. p for O(logn) rounds.

TransmiT allows transmission if sufficiently many probes were successful.
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Dominating Independent Set
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Dominating Independent Set (DIS) [Censor-Hillel et al., 2014]

Let G = (V,E,E') be a graph with disjoint edge sets E and E’. A DIS D CV
of G is independent w.r.t. E and dominating w.r.t. EUE'.

Independent Set: Let G = (V, E) be a graph. Ind C V of G is independent if
for all u,v € Ind there is no edge {u,v} € E.

Dominating Set: Let G = (V,E’) be a graph. Dom C V of G is dominating if
for all v € V' \ Dom there is a node u € Dom and an edge (u,v) € E'.
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Dominating Independent Set of H[S]
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Edges E[S] of H[S] can be partitioned into
Ese[S] @ p-safe edges
Eunsafe[S] : t-unsafe edges .

Algorithms CompuTEDIS(S, Egute [S], Eunsate [S])

Combine algorithm by [Linial, 1992] with TRANSMIT:
Obtain O(1)-coloring w.r.t. Eg¢[S] in O(lognlog* n) rounds.

For each color do

Active nodes of current color join DIS ...
... and deactivate their neighbors via TransmiT in O(logn).
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Obtain O(1)-coloring w.r.t. Egy[S] in O(lognlog* n) rounds.

For each color do

Active nodes of current color join DIS ...
... and deactivate their neighbors via TransmiT in O(logn).

Neighbors w.r.t. Eg,f[S] are differently colored = Independence w.r.t. Eg,g. [S].

Node deactivated via TRaANsMIT = Node dominated w.r.t. Eg,ge [S] U Eynsate[S]-
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Algorithm RoBUSTDISSEMINATION

For phase ¢ = 1 to ®(logR) do:

Sy sends with prob. 5 for O(Qlogn) rounds  O(logn-polylog(R)- %‘“j‘n‘

'mi

)

Determine DIS Sy of H[Sy] O(polylogn)

Property 1: There exists Q such that nodes in N(S) that did not receive M
yet, still have a neighbor in Sj. 0 € O(polylogR- gmi?x)

'min

Property 2: In final phase y remaining active nodes Sy, are ’sparse’
= all neighbors of Sy, receive M (Lemma).
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Algorithm RoBUSTDISSEMINATION
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