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Signal Propagation in the SINR Model
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Signal to Interference and Noise Ratio - Model

Nodes V embedded to metric space (X ,d). Time proceeds in rounds.
Nodes either send or listen. Set of interfering nodes I.

SINR parameters: Power P, Noise N, Path loss exponent α , Threshold β .

SINR(u,v, I) :=
P/d(u,v)α

N +∑w∈I P/d(w,v)α
≥ β
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Modeling Choices

Minimal assumptions:

No geometric information.

No power control.

No additional capabilities (e.g. carrier sensing).
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Model Extension: Unreliable SINR Model

Silent node v receives transmission from sender u if and only if

SINR(u,v, I) :=
P/d(u,v)α

N +∑w∈I P/d(w,v)α
≥ βv

Adversary chooses βv ∈ [βmin,βmax] for each transmission.
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Model Extension: Unreliable SINR Model

Silent node v receives transmission from sender u if and only if

SINR(u,v, I) :=
P/d(u,v)α

N +∑w∈I P/d(w,v)α
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Adversary Motivation

In standard SINR models message reception is subject to a deterministic function.

Real wireless transmission is inherently unstable and unreliable.

Adversary adds a dynamic component.

The proposed adversarial model captures a seemingly stronger adversary that
manipulates all SINR-parameters (P,N,α,β ).
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The Broadcast Problem

Broadcast Problem
Broadcast is solved when messageM is disseminated from a distinguished
source node to all other nodes in V .

Neighborhood Dissemination Problem

Neighborhood dissemination is solved whenM is disseminated from S⊆V
to their Neighbors N(S) in the communication graph GC.

Communication graph

GC := (V,{{u,v}|u,v ∈V,u 6= v,d(u,v)≤re}). Defined by the set of edges
among nodes within effective communication range re of each other.

Observation: Global Broadcast can be solved by solving Neighborhood
Dissemination D times where D is the diameter of GC.
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Solution Requirements

We want a robust randomized algorithm to solve broadcast, that works

... with high probability (w.h.p.),
that is with probability at least 1− 1

nc , for constant c and n := |V |.

... for any strategy of the adversary.
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Previous Results and Our Result

Paper Model Broadcast

Daum et al., 2013 Reliable SINR O
(
D·logn·log?n·polylogR

)
Jurdzinski et al., 2014 Reliable SINR O(D·log2 n)
Halldórsson et al., 2015 Reliable SINR O

(
(D+ logn)·polylogR

)
This paper Unreliable SINR O

(
βmax
βmin
·D·logn·log?n·polylogR

)
R is the Ratio between the length of the longest and shortest edge in GC.
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Communication Among Relatively Close Nodes

Lemma [cf. Daum et al., 2013]: Nodes S⊆V send with probability p. If
nodes u ∈ S,v ∈V are closer than a constant multiple of dS

min and are in safe
transmission range rs of each other then a safe transmission from u to v takes
place with constant probability µ ∈ (0, p).

S

v∈V

u∈S
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Neighborhood Dissemination Algorithm

Algorithm RobustDissemination

For phase φ = 1 to Θ(logR) do:
1 Sφ sends with prob. p

Q for O(Q logn) rounds (S1 := S)

2 Determine DIS Sφ+1 of H[Sφ ] (Sφ+1 ⊆ Sφ )

Algorithm proceeds in phases.

Sφ tries to disseminateM.

Sφ+1 ⊆ Sφ is ’thinned out’.

Property: Nodes in N(S) that did
not yet receiveM still have a close
neighbor in Sφ .

SINR-induced graph H[Sφ ] contains
short edges among nodes Sφ .

Compute Dominating Independet Set.

d
Sφ

min doubles each phase.

In final phase ψ: dSψ

min is large.

Lemma: Neighbors of Sψ receiveM.
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SINR-Induced Graphs - Without Adversary

S⊆V : sending with probability p.
H[S] has nodes S and reliable edges E[S].
E[S] contains (u,v) iff v receives message from u with probability ≥µ .

uv1
v2

(u, v2) /∈E[S]
P(v2 hears u)<µ

(u, v1)∈E[S]
P(v1 hears u)≥µ

Previous Lemma: Choose µ such that short edges (d(u,v)≤2dS
min) are in E[S].

Constant degree of ∆≤ 1/µ .
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SINR-Induced Graphs - With Adversary

σu,v := P
(
SINR(u,v, I)≥ βmax

)
τu,v := P

(
SINR(u,v, I)≥ βmin

)
.

H[S] contains all µ-safe edges

H[S] may contain µ-unsafe edges (adversary decides)

H[S] does not contain any other edges

u
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SINR-Induced Graphs - Computation

H[S] cannot be pre-computed due to the adversary.

Instead provide sub-procedure Transmit that nodes in S execute.

For pair u,v ∈ S participating in Transmit:

If {u,v} is µ-safe: Message transmitted.
If (u,v) is µ-unsafe: Adversary decides.
Otherwise: Message not transmitted.

⇒ Edges along which transmission takes place induce H[S].

Transmit probes edges by sending with prob. p for O(logn) rounds.

Transmit allows transmission if sufficiently many probes were successful.
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Dominating Independent Set

Dominating Independent Set (DIS) [Censor-Hillel et al., 2014]

Let G = (V,E,E ′) be a graph with disjoint edge sets E and E ′. A DIS D⊆V
of G is independent w.r.t. E and dominating w.r.t. E ∪E ′.

Independent Set: Let G = (V,E) be a graph. Ind ⊆V of G is independent if
for all u,v ∈ Ind there is no edge {u,v} ∈ E.

Dominating Set: Let G = (V,E ′) be a graph. Dom⊆V of G is dominating if
for all v ∈V \Dom there is a node u ∈ Dom and an edge (u,v) ∈ E ′.
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Dominating Independent Set of H[S]

Edges E[S] of H[S] can be partitioned into

Esafe[S] : µ-safe edges

Eunsafe[S] : µ-unsafe edges .

Algorithms ComputeDIS(S,Esafe[S],Eunsafe[S])

1 Combine algorithm by [Linial, 1992] with Transmit:
Obtain O(1)-coloring w.r.t. Esafe[S] in O(logn log? n) rounds.

2 For each color do

3 Active nodes of current color join DIS ...
4 ... and deactivate their neighbors via Transmit in O(logn).

Neighbors w.r.t. Esafe[S] are differently colored⇒ Independence w.r.t. Esafe[S].
Node deactivated via Transmit⇒ Node dominated w.r.t. Esafe[S]∪Eunsafe[S].
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Summary

Algorithm RobustDissemination

For phase φ = 1 to Θ(logR) do:

1 Sφ sends with prob. p
Q for O(Q logn) rounds O

(
logn·polylog(R)· βmax

βmin

)
2 Determine DIS Sφ+1 of H[Sφ ] O

(
polylogn

)
Property 1: There exists Q such that nodes in N(S) that did not receiveM
yet, still have a neighbor in Sφ . Q ∈O

(
polylogR· βmax

βmin

)
Property 2: In final phase ψ remaining active nodes Sψ are ’sparse’
⇒ all neighbors of Sψ receiveM (Lemma).

⇒O
(

polylog(n+R)· βmax
βmin

)
rounds to solve neighborhood dissemination.

⇒O
(
D·polylog(n+R)· βmax

βmin

)
rounds to solve broadcast in the Unreliable Model.
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Thank you.
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