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Causal consistency

Limitations of Highly-Available
Eventually-Cansistent Data Stores
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Causal consistency

Key ingredient
of several
consistency
criteria

Parallel Snapshot Isolation
[SOSP’11]

RedBlue Consistency
[OSDI'12]

Explicit Consistency
[EuroSys’15]

Session guarantees
[SOSP'97]
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Causal consistency

Operations may
arrive in the “wrong”
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Causal consistency

' Data center
should delay the
visibility of inconsistent

operations
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Causal consistency

Problem

It causal dependencies are not accurately tracked
metadata may generate false positives

False dependencies!
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Metadata

more metadata less metadata

—
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Metadata

Matrix/vector clocks

more metadata less metadata

A ———— )
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Metadata

Matrix/vector clocks

more metadata

One vector per
item.

One entry in each
vector per DC.

less metadata
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Metadata

Matrix/vector clocks Lamport’s clocks
more metadata less metadata

precise false positives

expensive cheap
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Problems of the previous state-of-the-art
Throughput vs. data staleness tradeoft

GentleRain [SoCC’ 14]: Optimizes throughput
Compresses metadata into a scalar

Cure [ICDCS’ 16]: Optimizes data freshness
Relies on a vector clock with an entry per data center
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Number of datacenters

12



Problems of the previous state-of-the-art
Throughput vs. data staleness tradeoft

GentleRain [SoCC’ 14]: Optimizes throughput
Compresses metadata into a scalar

Cure [ICDCS’ 16]: Optimizes data freshness
Relies on a vector clock with an entry per data center
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False
Problems of the previous state-Of-the-JREERrN e [Tl

Throughput vs. data staleness tradeoff damage data

freshness
GentleRain [SoCC’ 14]: Optimizes throughput
Compresses metadata into a scalar

Cure [ICDCS’ 16]: Optimizes data freshness
Relies on a vector clock with an entry per data center

Metadata
size affects
throughput

7 3
Number of datacenters



Problems of the previous state-of-the-art
Throughput vs. data staleness tradeoft

Partial replication aggravates the problem

Visibility latencies have direct impact on client
response latency

13



Our take on the problem

Saturn

—unomia
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Our take on the problem

—unomia

God in ancient Roman religion,
that become the god of time

15



Our take on the problem

Saturn Eunomia

Greek goddess of law and
legislation

10



Our take on the problem

Saturn —unomia

If this couple cannot fix the
problem, nobody can...
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Our take on the problem

Saturn

—unomia
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Our take on the problem

Saturn

—unomia

Orders
events across
datacenters
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Our take on the problem

Saturn

Orders
events Iin each
datacenter

—unomia
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Distributed metadata service

pluggable to existing geo-distributed data services

handles the dissemination of operations among data centers

Ensures that

clients always observe a causally consistent state

with a negligible performance overnead when compared to
an eventually consistency system

20
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key features

Requires a constant and small amount of metadata
regardless of the system’s scale (servers, partitions, and locations)

21
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2=l key features

A to avoid impairing

throughput
Mitigates the impact of false depe to enhance

. . . . data freshness
by relying on a tree-based disseminatio
Implements genuine partial replito take full advantage of
data centers only manage data and me partial replication
2

Requires a constant and small a
regardless of the system’s scale (serverg

replicated locally
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Decoupling data and metadata
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Decoupling data and metadata

SRS IS o)

data transfer
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Decoupling data and metadata

metadata transfer

O O O ©

data transfer
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Decoupling data and metadata

Data centers
only make remote
updates visible when
they have received both
the metadata and its

corresponding data

data transfer

22
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Metadata propagation
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Metadata propagation

Causal consistency is a partial order

Saturn exploits this fact by serving possibly
different linear extensions of the causal order to
each data center

Each served serialization aims at optimising data
freshness, and thus, reducing the impact of talse
dependencies

20
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Metadata propagation: architecture

Saturn leverages a set of cooperating servers, namely
serializers, forming a tree

Causal consistency is trivially enforced by the tree
assuming

FIFO links among serializers
Serializers propagate metadata preserving the observed order

Serializers are geographically distributed to optimize
data freshness

2/






Metadata dissemination graph







Optimal dissemination graph

The goal is to build the tree such that metadata-
paths latencies (through the tree) match data-paths

Weighted Minimal Mismatch

mismatch; ; = |AM (i, 7) — A(4, 7))

AN Y ;i icy Ciyj - mismatch;

30



Optimal dissemination graph

The goal is to build the tree such that metadata-
paths latencies (through ta eSS ata-paths

difference between
label-paths and data

Weighted Minimal Misma il
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Optimal dissemination graph

The goal is to build the tree such that metadata-
paths latencies (through the tree) match data-paths

Weighted Minimal Mismatch

minimize mismatch of

: Lo busiest paths
mismatch; ; = |AM (i, j) ’

c; j - mismatch;

min Zw,je

30



Metadata propagation: building the tree

Finding the optimal tree is modelled as a constraint
optimization problem

Input

Data-paths average latencies
Candidate locations for serializers (an latencies among them)
Access-patterns: to minimize the impact of mismatches

31
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~ data centers




Saturn requires each
datacenter

to output a
SERIAL
sequence of updates




Eunomia

each datacenter has many machines

how to serialize updates performed on different
machines without loosing performance”

usually one relies on sequencers that [imit
concurrency

38



Eunomia

conceived to replace sequencers used to
serialize updates in replicated storage systems

totally orders—consistently with causality—
local updates, before shipping them to Saturn
and other dcs

the ordering is done in the background, out of
client’s critical path

39
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Evaluation: goals

* Can Saturn+Eunomia optimize both throughput and
data freshness simultaneously?

 Why Saturn’s genuine partial replication matters?

 How important is the configuration of Saturn®?

* How Eunomia compares to sequencers?
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Saturn vs state-of-the-art

Public Facebook dataset

[B. Viswanath et al. On the evolution of user interaction in Facebook. WOSN "09]

Partitioning among 7 data centers

Replication factor min. 2 max. [2,5]
J. M. Pujol et al. The little engine(s) that could: Scaling online social networks. SIGCOMM ’'10]

Workload based on real soclal network workloads

|F. Benevenuto et al. Characterizing user behavior in online social networks. ICM "09]
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Saturn vs state-of-the-art
Throughput

Throughput (ops/sec)

120000
100000
80000
60000
40000
20000
0

Eventual 3 GentleRain Hmmm
Saturn Cure

max replication degree
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Saturn vs state-of-the-art
Data freshness: average
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Saturn vs state-of-the-art
Data freshness: average

Eventual ]  GentleRain
Saturn Cure hmmm
160

2 140+ B
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Still better than Cure

that uses vector clocks
and very close to eventual




Evaluation: goals

* Can Saturn+Eunomia optimize both throughput and
data freshness simultaneously?

 \Why Saturn’s genuine partial replication matters?

 How important is the configuration of Saturn®?

* How Eunomia compares to sequencers?
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Saturn
Genuine partial replication matters

N. Virgina Ireland Sydney
..’0.. " ..'00 "

 Sydney receives updates from Ireland
* |reland updates depend on N. Virginia updates
 Sydney does not replicate all N. Virginia data

58



Saturn
Genuine partial replication matters

Latency of updates from Ireland when applied at Sydney

CDF

0 40 80 120 160 200 240 280
Remote update visibility (milliseconds)
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Saturn
Genuine partial replication matters

Latency of updates from Ireland when applied at Sydney

CDF

Updates from Ireland are
stalled until metadata is
received from N. Virginia

Remote update visibility (




Evaluation: goals

* Can Saturn+Eunomia optimize both throughput and
data freshness simultaneously?

 Why Saturn’s genuine partial replication matters”

 How important is the configuration of Saturn®?

* How Eunomia compares to sequencers?
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Saturn configuration matters
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Saturn configuration matters
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Evaluation: goals

* Can Saturn+Eunomia optimize both throughput and
data freshness simultaneously?

 Why Saturn’s genuine partial replication matters”

 How important is the configuration of Saturn®?

* How Eunomia compares to sequencers?
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—valuation

Throughput (Kops/sec)
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Other features...

Support for fault-tolerance

On-line reconfiguration protocols

Efficient migration of clients among data centers

Impact of stragglers
More experiments
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ATC 2017

EUROSYS 2017

Check the papers for

more details.
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Take-away messages

e |tis possible to preserve concurrency inside a DC, and to
capture causality with a single scalar, using an ordering
service that is out the the client’s critical path

* These scalar clocks can be propagated using tree-based
dissemination, that can eftectively mitigate the impact of

false dependencies

« Combined, they allow the optimisation of both
throughput and data freshness
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