
Causality for the Masses:

Luís Rodrigues

Offering Fresh Data, Low Latency,
and High Throughput

Causality for the Masses:
Offering Fresh Data, Low Latency,

and High Throughput

Manuel Bravo,
Luís Rodrigues, Chathuri Gunawardhana, Peter van Roy

Causal consistency

Strongest 
without

compromising
availability

3

Causal consistency

Key ingredient
of several

consistency
criteria

Parallel Snapshot Isolation  
[SOSP’11]

RedBlue Consistency  
[OSDI’12]

Session guarantees  
[SOSP’97]

Explicit Consistency  
[EuroSys’15]

4

Causal consistency

5

Causal consistency

5

Causal consistency

5

Causal consistency

Operations may
arrive in the “wrong”

order

5

6

6

Alice

Bob

Dan

6

Alice

Dan is in the  
hospital!

Bob

Dan

6

Alice

Dan is in the  
hospital!

Dan is ok!

Bob

Dan

6

Alice

Dan is in the  
hospital!

Dan is ok!

Bob

Dan is in the  
hospital!

Dan

6

Alice

Dan is in the  
hospital!

Dan is ok!

Bob

Dan is in the  
hospital! Dan is ok!

Dan

6

Alice

Dan is in the  
hospital!

Dan is ok!

Bob

Dan is in the  
hospital! Dan is ok!

Dan

That’s great!

6

Alice

Dan is in the  
hospital!

Dan is ok!

Bob

Dan is in the  
hospital! Dan is ok!

Dan

That’s great!

6

Alice

Dan is in the  
hospital!

Dan is ok!

Bob

Dan is in the  
hospital! Dan is ok!

Dan

Dan is in the  
hospital!

That’s great!

6

Alice

Dan is in the  
hospital!

Dan is ok!

Bob

Dan is in the  
hospital! Dan is ok!

That’s great!

Dan

Dan is in the  
hospital!

That’s great!

6

Alice

Dan is in the  
hospital!

Dan is ok!

Bob

Dan is in the  
hospital! Dan is ok!

That’s great!

Dan

Dan is in the  
hospital!

That’s great!

Causal consistency

7

Causal consistency

Data center
should delay the

visibility of inconsistent
operations

7

8

8

Alice

Dan is in the  
hospital!

Dan is ok!

Bob

Dan is in the  
hospital! Dan is ok!

Dan

That’s great!

8

Alice

Dan is in the  
hospital!

Dan is ok!

Bob

Dan is in the  
hospital! Dan is ok!

Dan

Dan is in the  
hospital!

That’s great!

8

Alice

Dan is in the  
hospital!

Dan is ok!

Bob

Dan is in the  
hospital! Dan is ok!

That’s great!

Dan

Dan is in the  
hospital!

That’s great!

8

Alice

Dan is in the  
hospital!

Dan is ok!

Bob

Dan is in the  
hospital! Dan is ok!

That’s great!

Dan

Dan is in the  
hospital!

That’s great!

8

Alice

Dan is in the  
hospital!

Dan is ok!

Bob

Dan is in the  
hospital! Dan is ok!

That’s great!

Dan

Dan is in the  
hospital!

That’s great!

Dan is ok!

8

Alice

Dan is in the  
hospital!

Dan is ok!

Bob

Dan is in the  
hospital! Dan is ok!

That’s great!

Dan

Dan is in the  
hospital!

That’s great!

Dan is ok!

8

Alice

Dan is in the  
hospital!

Dan is ok!

Bob

Dan is in the  
hospital! Dan is ok!

Dan

Dan is in the  
hospital!

That’s great!

Dan is ok! That’s great!

8

Alice

Dan is in the  
hospital!

Dan is ok!

Bob

Dan is in the  
hospital! Dan is ok!

Dan

Dan is in the  
hospital!

That’s great!

Dan is ok! That’s great!

8

Alice

Dan is in the  
hospital!

Dan is ok!

Bob

Dan is in the  
hospital! Dan is ok!

Dan

Dan is in the  
hospital!

That’s great!

Dan is ok! That’s great!

This presentation is about keeping
Dan happy

8

Alice

Dan is in the  
hospital!

Dan is ok!

Bob

Dan is in the  
hospital! Dan is ok!

Dan

Dan is in the  
hospital!

That’s great!

Dan is ok! That’s great!

This presentation is about keeping
Dan happy

Requires
maintaing

and exchanging
metadata!

8

Alice

Dan is in the  
hospital!

Dan is ok!

Bob

Dan is in the  
hospital! Dan is ok!

Dan

Dan is in the  
hospital!

That’s great!

Dan is ok! That’s great!

This presentation is about keeping
Dan happy

Requires
maintaing

and exchanging
metadata!

Lots of
metadata!

Causal consistency

If causal dependencies are not accurately tracked
metadata may generate false positives

Problem

9

False dependencies!

10

10

Alice

Bob

Dan

10

Alice

Bob

Dan

10

Alice

Bob

Dan

10

Alice

Bob

Dan

10

Alice

Bob

Dan

10

Alice

Bob

Dan

10

Alice

Bob

Dan

10

Alice

Bob

Dan

10

Alice

Bob

Dan

11

Metadata

more metadata less metadata

11

Metadata

more metadata less metadata

Matrix/vector clocks

11

Metadata

more metadata less metadata

Matrix/vector clocks

One vector per
item.

One entry in each
vector per DC.

11

Metadata

more metadata less metadata

precise

expensive

Matrix/vector clocks

11

Metadata

more metadata less metadata

precise

expensive

Matrix/vector clocks Lamport’s clocks

11

Metadata

more metadata less metadata

precise

expensive

Matrix/vector clocks Lamport’s clocks

One scalar.

11

Metadata

more metadata less metadata

precise

expensive

false positives

cheap

Matrix/vector clocks Lamport’s clocks

Problems of the previous state-of-the-art
Throughput vs. data staleness tradeoff

-20
-16
-12
-8
-4
 0

 3 4 5 6 7

T
h

ro
u

g
h

p
u

t
 p

e
n

a
lty

 (
%

)

GentleRain Cure

 0
 20
 40
 60
 80

 100
 120

 3 4 5 6 7

D
a

ta
 s

ta
le

n
e

ss
 o

ve
rh

e
a

d
 (

%
)

Number of datacenters

GentleRain [SoCC’ 14]: Optimizes throughput  
Compresses metadata into a scalar

Cure [ICDCS’ 16]: Optimizes data freshness  
Relies on a vector clock with an entry per data center

12

Problems of the previous state-of-the-art
Throughput vs. data staleness tradeoff

-20
-16
-12
-8
-4
 0

 3 4 5 6 7

T
h

ro
u

g
h

p
u

t
 p

e
n

a
lty

 (
%

)

GentleRain Cure

 0
 20
 40
 60
 80

 100
 120

 3 4 5 6 7

D
a

ta
 s

ta
le

n
e

ss
 o

ve
rh

e
a

d
 (

%
)

Number of datacenters

GentleRain [SoCC’ 14]: Optimizes throughput  
Compresses metadata into a scalar

Cure [ICDCS’ 16]: Optimizes data freshness  
Relies on a vector clock with an entry per data center

12

Metadata
size affects
throughput

Problems of the previous state-of-the-art
Throughput vs. data staleness tradeoff

-20
-16
-12
-8
-4
 0

 3 4 5 6 7

T
h

ro
u

g
h

p
u

t
 p

e
n

a
lty

 (
%

)

GentleRain Cure

 0
 20
 40
 60
 80

 100
 120

 3 4 5 6 7

D
a

ta
 s

ta
le

n
e

ss
 o

ve
rh

e
a

d
 (

%
)

Number of datacenters

GentleRain [SoCC’ 14]: Optimizes throughput  
Compresses metadata into a scalar

Cure [ICDCS’ 16]: Optimizes data freshness  
Relies on a vector clock with an entry per data center

12

False
dependencies
damage data

freshness

Metadata
size affects
throughput

Problems of the previous state-of-the-art
Throughput vs. data staleness tradeoff

Visibility latencies have direct impact on client
response latency

Partial replication aggravates the problem

13

Our take on the problem

14

Saturn Eunomia

+

Our take on the problem

15

Saturn Eunomia

God in ancient Roman religion,
that become the god of time

+

Our take on the problem

16

Saturn Eunomia

Greek goddess of law and
legislation

+

Our take on the problem

17

Saturn Eunomia

If this couple cannot fix the
problem, nobody can…

+

Our take on the problem

18

Saturn Eunomia

+

Our take on the problem

18

Saturn Eunomia

Orders
events across
datacenters

+

Our take on the problem

18

Saturn Eunomia

Orders
events in each

datacenter

+

19

Distributed metadata service

pluggable to existing geo-distributed data services

handles the dissemination of operations among data centers

Ensures that
clients always observe a causally consistent state

with a negligible performance overhead when compared to
an eventually consistency system

20

key features

21

key features

Requires a constant and small amount of metadata  
regardless of the system’s scale (servers, partitions, and locations)

21

key features

Requires a constant and small amount of metadata  
regardless of the system’s scale (servers, partitions, and locations)

to avoid impairing
throughput

21

key features

Mitigates the impact of false dependencies  
by relying on a tree-based dissemination

Requires a constant and small amount of metadata  
regardless of the system’s scale (servers, partitions, and locations)

to avoid impairing
throughput

21

key features

Mitigates the impact of false dependencies  
by relying on a tree-based dissemination

Requires a constant and small amount of metadata  
regardless of the system’s scale (servers, partitions, and locations)

to avoid impairing
throughput

to enhance 
data freshness

21

key features

Mitigates the impact of false dependencies  
by relying on a tree-based dissemination

Implements genuine partial replication 
data centers only manage data and metadata of the items
replicated locally

Requires a constant and small amount of metadata  
regardless of the system’s scale (servers, partitions, and locations)

to avoid impairing
throughput

to enhance 
data freshness

21

key features

Mitigates the impact of false dependencies  
by relying on a tree-based dissemination

Implements genuine partial replication 
data centers only manage data and metadata of the items
replicated locally

Requires a constant and small amount of metadata  
regardless of the system’s scale (servers, partitions, and locations)

to avoid impairing
throughput

to enhance 
data freshness

to take full advantage of
partial replication

21

Decoupling data and metadata

3 421

22

Decoupling data and metadata

3 421

data transfer
22

Decoupling data and metadata

3 421

data transfer

metadata transfer

22

Decoupling data and metadata

3 421

data transfer

metadata transfer
Data centers

only make remote
updates visible when

they have received both
the metadata and its
corresponding data

22

Example: write request

Example: write request

…

data

labels

3 N21

data centers

Example: write request

…

data

labels

3 N21Client 1

data centers

Example: write request

…put(a1)

data

labels

3 N21Client 1

data centers

Example: write request

…put(a1)

data

labels

3 N21Client 1

data centers

Example: write request

…put(a1)

data

labels

3 N21Client 1

data centersa1

Example: write request

…put(a1)

data

labels

3 N21Client 1

data centers

Example: write request

…put(a1)

data

labels

3 N21Client 1

data centers

Example: write request

…put(a1)

data

labels

3 N21Client 1

data centers

Example: write request

…put(a1)

data

labels

3 N21Client 1

data centers

Example: write request

…put(a1)

data

labels

3 N21Client 1

data centers

Example: write request

…put(a1)

data

labels

3 N21Client 1

data centers

Example: write request

…put(a1)

data

labels

3 N21Client 1

data centers

Metadata propagation

3 421

24

Metadata propagation

a (2)

3 421

b (4)
c (6)

24

Metadata propagation

a (2)

3 421

b (4)
c (6)

b
c

a a concurrent to both b and c
c causally depends on b

24

Metadata propagation

a (2)

3 421

b (4)
c (6) ??

b
c

a a concurrent to both b and c
c causally depends on b

24

Metadata propagation

a (2)

3 421

b (4)
c (6) ??

a b c ?

b
c

a a concurrent to both b and c
c causally depends on b

24

Metadata propagation

a (2)

3 421

b (4)
c (6) ??

b a c ?

a b c ?

b
c

a a concurrent to both b and c
c causally depends on b

24

Metadata propagation

a (2)

3 421

b (4)
c (6) ?

b c a ?
?

b a c ?

a b c ?

b
c

a a concurrent to both b and c
c causally depends on b

24

Metadata propagation

3 421

25

Metadata propagation

a (2)

3 421

b (4)
c (6)

b
c

a a concurrent to both b and c
c causally depends on b

25

Metadata propagation

a (2)

3 421

b (4)
c (6)

1ms 1ms

10ms

b
c

a a concurrent to both b and c
c causally depends on b

10ms

25

Metadata propagation

a (2)

3 421

b (4)
c (6)

1ms 1ms

10ms

b
c

a a concurrent to both b and c
c causally depends on b

10ms

25

a -> 3  
b -> 14
c -> 16

Metadata propagation

a (2)

3 421

b (4)
c (6)

1ms 1ms

10ms

b
c

a a concurrent to both b and c
c causally depends on b

10ms

25

a -> 3  
b -> 14
c -> 16

c  
b
a

Metadata propagation

a (2)

3 421

b (4)
c (6)

1ms 1ms

10ms

b
c

a a concurrent to both b and c
c causally depends on b

10ms

25

c  
b
a

Metadata propagation

a (2)

3 421

b (4)
c (6)

1ms 1ms

10ms

?

b
c

a a concurrent to both b and c
c causally depends on b

10ms

25

c  
b
a

Metadata propagation

a (2)

3 421

b (4)
c (6)

1ms 1ms

10ms

?

b -> 5  
c -> 7

a -> 12

b
c

a a concurrent to both b and c
c causally depends on b

10ms

25

c  
b
a

Metadata propagation

a (2)

3 421

b (4)
c (6)

1ms 1ms

10ms

?

b -> 5  
c -> 7

a -> 12

c 
b 
a

b
c

a a concurrent to both b and c
c causally depends on b

10ms

25

c  
b
a

Metadata propagation

a (2)

3 421

b (4)
c (6)

1ms 1ms

10ms

?

b -> 5  
c -> 7

a -> 12

c 
b 
a

delayed

b
c

a a concurrent to both b and c
c causally depends on b

10ms

25

c  
b
a

Metadata propagation

a (2)

3 421

b (4)
c (6)

1ms 1ms

10ms

?

b -> 5  
c -> 7

a -> 12

c 
b 
a

a -> 12  
b -> 12
c -> 12

delayed

b
c

a a concurrent to both b and c
c causally depends on b

10ms

25

c  
b
a

Metadata propagation

a (2)

3 421

b (4)
c (6)

1ms 1ms

10ms

?

b -> 5  
c -> 7

a -> 12

c 
b 
a

a -> 12  
b -> 12
c -> 12

delayed

c 
a 
b

b
c

a a concurrent to both b and c
c causally depends on b

10ms

25

c  
b
a

Metadata propagation

a (2)

3 421

b (4)
c (6)

1ms 1ms

10ms

?

b -> 5  
c -> 7

a -> 12

c 
b 
a

a -> 12  
b -> 12
c -> 12

delayed

c 
a 
b

delayed

b
c

a a concurrent to both b and c
c causally depends on b

10ms

25

c  
b
a

Metadata propagation

a (2)

3 421

b (4)
c (6)

1ms 1ms

10ms

?

b -> 5  
c -> 7

a -> 12

c 
b 
a

a -> 12  
b -> 12
c -> 12

delayed

c 
a 
b

b -> 5  
a -> 12
c -> 12

delayed

b
c

a a concurrent to both b and c
c causally depends on b

10ms

25

c  
b
a

Metadata propagation

a (2)

3 421

b (4)
c (6)

1ms 1ms

10ms

?

b -> 5  
c -> 7

a -> 12

c 
b 
a

a -> 12  
b -> 12
c -> 12

delayed

c 
a 
b

b -> 5  
a -> 12
c -> 12

delayed

a 
c 
b

b
c

a a concurrent to both b and c
c causally depends on b

10ms

25

c  
b
a

Metadata propagation

a (2)

3 421

b (4)
c (6)

1ms 1ms

10ms

?

b -> 5  
c -> 7

a -> 12

c 
b 
a

a -> 12  
b -> 12
c -> 12

delayed

c 
a 
b

b -> 5  
a -> 12
c -> 12

delayed

a 
c 
b

b -> 5  
c -> 7

a -> 12

b
c

a a concurrent to both b and c
c causally depends on b

10ms

25

c  
b
a

Metadata propagation

a (2)

3 421

b (4)
c (6)

1ms 1ms

10ms

b -> 5  
c -> 7

a -> 12

c 
b 
a

a -> 12  
b -> 12
c -> 12

delayed

c 
a 
b

b -> 5  
a -> 12
c -> 12

delayed

a 
c 
b

b -> 5  
c -> 7

a -> 12

a
c  
b

b
c

a a concurrent to both b and c
c causally depends on b

10ms

25

c  
b
a

Metadata propagation

Causal consistency is a partial order

Saturn exploits this fact by serving possibly
different linear extensions of the causal order to
each data center

Each served serialization aims at optimising data
freshness, and thus, reducing the impact of false
dependencies

26

Metadata propagation

Causal consistency is a partial order

Saturn exploits this fact by serving possibly
different linear extensions of the causal order to
each data center

Each served serialization aims at optimising data
freshness, and thus, reducing the impact of false
dependencies

a
c 
b

c 
b
a

26

Metadata propagation: architecture

Saturn leverages a set of cooperating servers, namely
serializers, forming a tree

Causal consistency is trivially enforced by the tree
assuming
 

 FIFO links among serializers
 

 Serializers propagate metadata preserving the observed order

Serializers are geographically distributed to optimize
data freshness

27

Metadata dissemination graph

3 421

Saturn

S1 S2 S3 S4

S5

Metadata dissemination graph

3 421

Saturn

Metadata dissemination graph

3 421

Saturn

S1 S2 S3 S4

S5 S6

Optimal dissemination graph

Weighted Minimal Mismatch

5.4 Configuring SATURN’s Metadata Service
The quality of the serialization served by SATURN to each
datacenter depends on how the service is configured. A SAT-
URN’s configuration defines: (i) the number of serializers to
use and where to place them; (ii) how these serializers are
connected (among each other and with datacenters); and (iii)
what delays (if any) should a serializer artificially add when
propagating labels (in order to match the optimal visibility
time). Let �ij denote the artificial delay added by serializer
i when propagating metadata to serializer j.

In practice, when deploying SATURN, one has not com-
plete freedom to select the geo-location of serializers. In-
stead, the list of potential locations for serializers is limited
by the availability of suitable points-of-presence that results
from business constraints. Therefore, the task of setting-up a
serializer network is based on:
• The set V of datacenters that need to be connected (we

denote N = |V | the total number of datacenters).
• The latencies of the bulk data transfer service among

these datacenters; latij denotes the latency between dat-
acenters i and j.

• The set W of potential locations for placing serializers
(M = |W |). Since each datacenter is a natural potential
serializer location, M � N . Let dij denote the latency
between two serializer locations i and j.
However, given a limited set of potential locations to

place serializers, it is unlikely (impossible in most cases) to
match the optimal label propagation latency for every pair of
datacenters. Therefore, the best we can aim when setting-up
SATURN is to minimize the mismatch among the achievable
label propagation latency and the optimal label propagation
latency. More precisely, consider that the path for a given
topology between two datacenters, i and j, denoted PM

i,j is
composed by a set of serializers PM

i,j = {Sk, ..., So}, where
Sk connects to datacenter i and So connects to datacenter j.
The latency of this path �M (i, j) is defined by the latencies
(d) between adjacent nodes in the path, plus any artificial
delays that may be added at each step, i.e.:

�M (i, j) =
P

Sk2PM
i,j\{So}

(dk,k+1 + �k,k+1)

and the mismatch between the resulting latency and the
optimal label propagation latency is given by:

mismatchi,j = |�M (i, j)��(i, j)|

Finally, one can observe that in general, the distribution
of client requests, among items and datacenters may not
be uniform, i.e., some items and some datacenters may be
more accessed than others. As a result, a mismatch that
affects the data visibility of a highly accessed item may
have a more negative effect on the user experience than
a mismatch on a seldom accessed item. Therefore, in the
scenario where it is possible to collect statistics regarding
which items and datacenters are more used, it is possible to
assign a weight ci,j to each metadata path PM

i,j , that reflects

the relative importance of that path for the business goals
of the application. Using these weights, we can now define
precisely an optimization criteria that should be followed
when setting up the serializers topology:

DEFINITION 2 (Weighted Minimal Mismatch). The config-
uration that better approximates the optimal visibility time
for data updates, considering the relative relevance of each
type of update, is the one that minimizes the weighted global
mismatch, defined as:

min
P

8i,j2V ci,j · mismatchi,j

5.5 Configuration Generator
The problem of finding a configuration that minimizes the
Weighted Minimal Mismatch criteria, among all possible
configurations that satisfy the constraints of the problem,
is NP-hard.2 Therefore, we have designed a heuristic that
approximates the optimal solution using a constraint solver
as a building block. We have modeled the minimization
problem captures by Definition 2 as a constraint problem
such that for a given tree, finds the optimal location of
serializers (for a given set of possible location candidates)
and the optimal (if any) propagation delays.

The proposed algorithm, depicted in Alg. 3, works as fol-
lows. Iteratively, starting with a full binary tree with only
two leaves (Alg. 3, line 3), generates all possible isomor-
phism classes of full binary trees with N labeled leaves (i.e.,
datacenters). The algorithm adds one labeled leaf (datacen-
ter) at each iteration until the number of leaves is equal to
the total number of datacenters. For a given full binary tree
T of f leaves, there exist 2⇤ f �1 isomorphic classes of full
binary trees with f+1 leaves. One can obtain a new isomor-
phic class by either inserting a new internal node within an
edge of T from which the new leaf hangs (Alg. 3, line 14),
or by creating a new root from which the new leaf and T
hang (Alg. 3, line 10). We could iterate until generating all
possible trees of N leaves. Nevertheless, in order to avoid
a combinatorial explosion (for nine datacenters there would
already be 2,027,025 possible trees), the algorithm selects
at each iteration the most promising trees and discards the
rest. In order to rank the trees at each iteration, we use the
constraint solver. Therefore, given a totally ordered list of
ranked trees, if the difference between the rankings of two
consecutive trees T1 and T2 is greater than a given thresh-
old, T2 and all following trees are discarded (Alg. 3, line 18).
At the last iteration, among all trees with N leaves, we pick
the one that produces the smallest global mismatch from the
optimal visibility times by relying on the constraint solver.

Note that Algorithm 3 always returns a binary tree. Nev-
ertheless, SATURN does not require the tree to be binary.
One can easily fuse two serializers into one if both are di-
rectly connected, placed in the same location, and the artif-
ical propagation delays among them are zero. Any of these

2 A reduction from the Steiner tree problem [35] can be used to prove this.

5.4 Configuring SATURN’s Metadata Service
The quality of the serialization served by SATURN to each
datacenter depends on how the service is configured. A SAT-
URN’s configuration defines: (i) the number of serializers to
use and where to place them; (ii) how these serializers are
connected (among each other and with datacenters); and (iii)
what delays (if any) should a serializer artificially add when
propagating labels (in order to match the optimal visibility
time). Let �ij denote the artificial delay added by serializer
i when propagating metadata to serializer j.

In practice, when deploying SATURN, one has not com-
plete freedom to select the geo-location of serializers. In-
stead, the list of potential locations for serializers is limited
by the availability of suitable points-of-presence that results
from business constraints. Therefore, the task of setting-up a
serializer network is based on:
• The set V of datacenters that need to be connected (we

denote N = |V | the total number of datacenters).
• The latencies of the bulk data transfer service among

these datacenters; latij denotes the latency between dat-
acenters i and j.

• The set W of potential locations for placing serializers
(M = |W |). Since each datacenter is a natural potential
serializer location, M � N . Let dij denote the latency
between two serializer locations i and j.
However, given a limited set of potential locations to

place serializers, it is unlikely (impossible in most cases) to
match the optimal label propagation latency for every pair of
datacenters. Therefore, the best we can aim when setting-up
SATURN is to minimize the mismatch among the achievable
label propagation latency and the optimal label propagation
latency. More precisely, consider that the path for a given
topology between two datacenters, i and j, denoted PM

i,j is
composed by a set of serializers PM

i,j = {Sk, ..., So}, where
Sk connects to datacenter i and So connects to datacenter j.
The latency of this path �M (i, j) is defined by the latencies
(d) between adjacent nodes in the path, plus any artificial
delays that may be added at each step, i.e.:

�M (i, j) =
P

Sk2PM
i,j\{So}

(dk,k+1 + �k,k+1)

and the mismatch between the resulting latency and the
optimal label propagation latency is given by:

mismatchi,j = |�M (i, j)��(i, j)|

Finally, one can observe that in general, the distribution
of client requests, among items and datacenters may not
be uniform, i.e., some items and some datacenters may be
more accessed than others. As a result, a mismatch that
affects the data visibility of a highly accessed item may
have a more negative effect on the user experience than
a mismatch on a seldom accessed item. Therefore, in the
scenario where it is possible to collect statistics regarding
which items and datacenters are more used, it is possible to
assign a weight ci,j to each metadata path PM

i,j , that reflects

the relative importance of that path for the business goals
of the application. Using these weights, we can now define
precisely an optimization criteria that should be followed
when setting up the serializers topology:

DEFINITION 2 (Weighted Minimal Mismatch). The config-
uration that better approximates the optimal visibility time
for data updates, considering the relative relevance of each
type of update, is the one that minimizes the weighted global
mismatch, defined as:

min
P

8i,j2V ci,j · mismatchi,j

5.5 Configuration Generator
The problem of finding a configuration that minimizes the
Weighted Minimal Mismatch criteria, among all possible
configurations that satisfy the constraints of the problem,
is NP-hard.2 Therefore, we have designed a heuristic that
approximates the optimal solution using a constraint solver
as a building block. We have modeled the minimization
problem captures by Definition 2 as a constraint problem
such that for a given tree, finds the optimal location of
serializers (for a given set of possible location candidates)
and the optimal (if any) propagation delays.

The proposed algorithm, depicted in Alg. 3, works as fol-
lows. Iteratively, starting with a full binary tree with only
two leaves (Alg. 3, line 3), generates all possible isomor-
phism classes of full binary trees with N labeled leaves (i.e.,
datacenters). The algorithm adds one labeled leaf (datacen-
ter) at each iteration until the number of leaves is equal to
the total number of datacenters. For a given full binary tree
T of f leaves, there exist 2⇤ f �1 isomorphic classes of full
binary trees with f+1 leaves. One can obtain a new isomor-
phic class by either inserting a new internal node within an
edge of T from which the new leaf hangs (Alg. 3, line 14),
or by creating a new root from which the new leaf and T
hang (Alg. 3, line 10). We could iterate until generating all
possible trees of N leaves. Nevertheless, in order to avoid
a combinatorial explosion (for nine datacenters there would
already be 2,027,025 possible trees), the algorithm selects
at each iteration the most promising trees and discards the
rest. In order to rank the trees at each iteration, we use the
constraint solver. Therefore, given a totally ordered list of
ranked trees, if the difference between the rankings of two
consecutive trees T1 and T2 is greater than a given thresh-
old, T2 and all following trees are discarded (Alg. 3, line 18).
At the last iteration, among all trees with N leaves, we pick
the one that produces the smallest global mismatch from the
optimal visibility times by relying on the constraint solver.

Note that Algorithm 3 always returns a binary tree. Nev-
ertheless, SATURN does not require the tree to be binary.
One can easily fuse two serializers into one if both are di-
rectly connected, placed in the same location, and the artif-
ical propagation delays among them are zero. Any of these

2 A reduction from the Steiner tree problem [35] can be used to prove this.

The goal is to build the tree such that metadata-
paths latencies (through the tree) match data-paths

30

Optimal dissemination graph

Weighted Minimal Mismatch

5.4 Configuring SATURN’s Metadata Service
The quality of the serialization served by SATURN to each
datacenter depends on how the service is configured. A SAT-
URN’s configuration defines: (i) the number of serializers to
use and where to place them; (ii) how these serializers are
connected (among each other and with datacenters); and (iii)
what delays (if any) should a serializer artificially add when
propagating labels (in order to match the optimal visibility
time). Let �ij denote the artificial delay added by serializer
i when propagating metadata to serializer j.

In practice, when deploying SATURN, one has not com-
plete freedom to select the geo-location of serializers. In-
stead, the list of potential locations for serializers is limited
by the availability of suitable points-of-presence that results
from business constraints. Therefore, the task of setting-up a
serializer network is based on:
• The set V of datacenters that need to be connected (we

denote N = |V | the total number of datacenters).
• The latencies of the bulk data transfer service among

these datacenters; latij denotes the latency between dat-
acenters i and j.

• The set W of potential locations for placing serializers
(M = |W |). Since each datacenter is a natural potential
serializer location, M � N . Let dij denote the latency
between two serializer locations i and j.
However, given a limited set of potential locations to

place serializers, it is unlikely (impossible in most cases) to
match the optimal label propagation latency for every pair of
datacenters. Therefore, the best we can aim when setting-up
SATURN is to minimize the mismatch among the achievable
label propagation latency and the optimal label propagation
latency. More precisely, consider that the path for a given
topology between two datacenters, i and j, denoted PM

i,j is
composed by a set of serializers PM

i,j = {Sk, ..., So}, where
Sk connects to datacenter i and So connects to datacenter j.
The latency of this path �M (i, j) is defined by the latencies
(d) between adjacent nodes in the path, plus any artificial
delays that may be added at each step, i.e.:

�M (i, j) =
P

Sk2PM
i,j\{So}

(dk,k+1 + �k,k+1)

and the mismatch between the resulting latency and the
optimal label propagation latency is given by:

mismatchi,j = |�M (i, j)��(i, j)|

Finally, one can observe that in general, the distribution
of client requests, among items and datacenters may not
be uniform, i.e., some items and some datacenters may be
more accessed than others. As a result, a mismatch that
affects the data visibility of a highly accessed item may
have a more negative effect on the user experience than
a mismatch on a seldom accessed item. Therefore, in the
scenario where it is possible to collect statistics regarding
which items and datacenters are more used, it is possible to
assign a weight ci,j to each metadata path PM

i,j , that reflects

the relative importance of that path for the business goals
of the application. Using these weights, we can now define
precisely an optimization criteria that should be followed
when setting up the serializers topology:

DEFINITION 2 (Weighted Minimal Mismatch). The config-
uration that better approximates the optimal visibility time
for data updates, considering the relative relevance of each
type of update, is the one that minimizes the weighted global
mismatch, defined as:

min
P

8i,j2V ci,j · mismatchi,j

5.5 Configuration Generator
The problem of finding a configuration that minimizes the
Weighted Minimal Mismatch criteria, among all possible
configurations that satisfy the constraints of the problem,
is NP-hard.2 Therefore, we have designed a heuristic that
approximates the optimal solution using a constraint solver
as a building block. We have modeled the minimization
problem captures by Definition 2 as a constraint problem
such that for a given tree, finds the optimal location of
serializers (for a given set of possible location candidates)
and the optimal (if any) propagation delays.

The proposed algorithm, depicted in Alg. 3, works as fol-
lows. Iteratively, starting with a full binary tree with only
two leaves (Alg. 3, line 3), generates all possible isomor-
phism classes of full binary trees with N labeled leaves (i.e.,
datacenters). The algorithm adds one labeled leaf (datacen-
ter) at each iteration until the number of leaves is equal to
the total number of datacenters. For a given full binary tree
T of f leaves, there exist 2⇤ f �1 isomorphic classes of full
binary trees with f+1 leaves. One can obtain a new isomor-
phic class by either inserting a new internal node within an
edge of T from which the new leaf hangs (Alg. 3, line 14),
or by creating a new root from which the new leaf and T
hang (Alg. 3, line 10). We could iterate until generating all
possible trees of N leaves. Nevertheless, in order to avoid
a combinatorial explosion (for nine datacenters there would
already be 2,027,025 possible trees), the algorithm selects
at each iteration the most promising trees and discards the
rest. In order to rank the trees at each iteration, we use the
constraint solver. Therefore, given a totally ordered list of
ranked trees, if the difference between the rankings of two
consecutive trees T1 and T2 is greater than a given thresh-
old, T2 and all following trees are discarded (Alg. 3, line 18).
At the last iteration, among all trees with N leaves, we pick
the one that produces the smallest global mismatch from the
optimal visibility times by relying on the constraint solver.

Note that Algorithm 3 always returns a binary tree. Nev-
ertheless, SATURN does not require the tree to be binary.
One can easily fuse two serializers into one if both are di-
rectly connected, placed in the same location, and the artif-
ical propagation delays among them are zero. Any of these

2 A reduction from the Steiner tree problem [35] can be used to prove this.

5.4 Configuring SATURN’s Metadata Service
The quality of the serialization served by SATURN to each
datacenter depends on how the service is configured. A SAT-
URN’s configuration defines: (i) the number of serializers to
use and where to place them; (ii) how these serializers are
connected (among each other and with datacenters); and (iii)
what delays (if any) should a serializer artificially add when
propagating labels (in order to match the optimal visibility
time). Let �ij denote the artificial delay added by serializer
i when propagating metadata to serializer j.

In practice, when deploying SATURN, one has not com-
plete freedom to select the geo-location of serializers. In-
stead, the list of potential locations for serializers is limited
by the availability of suitable points-of-presence that results
from business constraints. Therefore, the task of setting-up a
serializer network is based on:
• The set V of datacenters that need to be connected (we

denote N = |V | the total number of datacenters).
• The latencies of the bulk data transfer service among

these datacenters; latij denotes the latency between dat-
acenters i and j.

• The set W of potential locations for placing serializers
(M = |W |). Since each datacenter is a natural potential
serializer location, M � N . Let dij denote the latency
between two serializer locations i and j.
However, given a limited set of potential locations to

place serializers, it is unlikely (impossible in most cases) to
match the optimal label propagation latency for every pair of
datacenters. Therefore, the best we can aim when setting-up
SATURN is to minimize the mismatch among the achievable
label propagation latency and the optimal label propagation
latency. More precisely, consider that the path for a given
topology between two datacenters, i and j, denoted PM

i,j is
composed by a set of serializers PM

i,j = {Sk, ..., So}, where
Sk connects to datacenter i and So connects to datacenter j.
The latency of this path �M (i, j) is defined by the latencies
(d) between adjacent nodes in the path, plus any artificial
delays that may be added at each step, i.e.:

�M (i, j) =
P

Sk2PM
i,j\{So}

(dk,k+1 + �k,k+1)

and the mismatch between the resulting latency and the
optimal label propagation latency is given by:

mismatchi,j = |�M (i, j)��(i, j)|

Finally, one can observe that in general, the distribution
of client requests, among items and datacenters may not
be uniform, i.e., some items and some datacenters may be
more accessed than others. As a result, a mismatch that
affects the data visibility of a highly accessed item may
have a more negative effect on the user experience than
a mismatch on a seldom accessed item. Therefore, in the
scenario where it is possible to collect statistics regarding
which items and datacenters are more used, it is possible to
assign a weight ci,j to each metadata path PM

i,j , that reflects

the relative importance of that path for the business goals
of the application. Using these weights, we can now define
precisely an optimization criteria that should be followed
when setting up the serializers topology:

DEFINITION 2 (Weighted Minimal Mismatch). The config-
uration that better approximates the optimal visibility time
for data updates, considering the relative relevance of each
type of update, is the one that minimizes the weighted global
mismatch, defined as:

min
P

8i,j2V ci,j · mismatchi,j

5.5 Configuration Generator
The problem of finding a configuration that minimizes the
Weighted Minimal Mismatch criteria, among all possible
configurations that satisfy the constraints of the problem,
is NP-hard.2 Therefore, we have designed a heuristic that
approximates the optimal solution using a constraint solver
as a building block. We have modeled the minimization
problem captures by Definition 2 as a constraint problem
such that for a given tree, finds the optimal location of
serializers (for a given set of possible location candidates)
and the optimal (if any) propagation delays.

The proposed algorithm, depicted in Alg. 3, works as fol-
lows. Iteratively, starting with a full binary tree with only
two leaves (Alg. 3, line 3), generates all possible isomor-
phism classes of full binary trees with N labeled leaves (i.e.,
datacenters). The algorithm adds one labeled leaf (datacen-
ter) at each iteration until the number of leaves is equal to
the total number of datacenters. For a given full binary tree
T of f leaves, there exist 2⇤ f �1 isomorphic classes of full
binary trees with f+1 leaves. One can obtain a new isomor-
phic class by either inserting a new internal node within an
edge of T from which the new leaf hangs (Alg. 3, line 14),
or by creating a new root from which the new leaf and T
hang (Alg. 3, line 10). We could iterate until generating all
possible trees of N leaves. Nevertheless, in order to avoid
a combinatorial explosion (for nine datacenters there would
already be 2,027,025 possible trees), the algorithm selects
at each iteration the most promising trees and discards the
rest. In order to rank the trees at each iteration, we use the
constraint solver. Therefore, given a totally ordered list of
ranked trees, if the difference between the rankings of two
consecutive trees T1 and T2 is greater than a given thresh-
old, T2 and all following trees are discarded (Alg. 3, line 18).
At the last iteration, among all trees with N leaves, we pick
the one that produces the smallest global mismatch from the
optimal visibility times by relying on the constraint solver.

Note that Algorithm 3 always returns a binary tree. Nev-
ertheless, SATURN does not require the tree to be binary.
One can easily fuse two serializers into one if both are di-
rectly connected, placed in the same location, and the artif-
ical propagation delays among them are zero. Any of these

2 A reduction from the Steiner tree problem [35] can be used to prove this.

The goal is to build the tree such that metadata-
paths latencies (through the tree) match data-pathsabsolute

difference between
label-paths and data

paths

30

Optimal dissemination graph

Weighted Minimal Mismatch

5.4 Configuring SATURN’s Metadata Service
The quality of the serialization served by SATURN to each
datacenter depends on how the service is configured. A SAT-
URN’s configuration defines: (i) the number of serializers to
use and where to place them; (ii) how these serializers are
connected (among each other and with datacenters); and (iii)
what delays (if any) should a serializer artificially add when
propagating labels (in order to match the optimal visibility
time). Let �ij denote the artificial delay added by serializer
i when propagating metadata to serializer j.

In practice, when deploying SATURN, one has not com-
plete freedom to select the geo-location of serializers. In-
stead, the list of potential locations for serializers is limited
by the availability of suitable points-of-presence that results
from business constraints. Therefore, the task of setting-up a
serializer network is based on:
• The set V of datacenters that need to be connected (we

denote N = |V | the total number of datacenters).
• The latencies of the bulk data transfer service among

these datacenters; latij denotes the latency between dat-
acenters i and j.

• The set W of potential locations for placing serializers
(M = |W |). Since each datacenter is a natural potential
serializer location, M � N . Let dij denote the latency
between two serializer locations i and j.
However, given a limited set of potential locations to

place serializers, it is unlikely (impossible in most cases) to
match the optimal label propagation latency for every pair of
datacenters. Therefore, the best we can aim when setting-up
SATURN is to minimize the mismatch among the achievable
label propagation latency and the optimal label propagation
latency. More precisely, consider that the path for a given
topology between two datacenters, i and j, denoted PM

i,j is
composed by a set of serializers PM

i,j = {Sk, ..., So}, where
Sk connects to datacenter i and So connects to datacenter j.
The latency of this path �M (i, j) is defined by the latencies
(d) between adjacent nodes in the path, plus any artificial
delays that may be added at each step, i.e.:

�M (i, j) =
P

Sk2PM
i,j\{So}

(dk,k+1 + �k,k+1)

and the mismatch between the resulting latency and the
optimal label propagation latency is given by:

mismatchi,j = |�M (i, j)��(i, j)|

Finally, one can observe that in general, the distribution
of client requests, among items and datacenters may not
be uniform, i.e., some items and some datacenters may be
more accessed than others. As a result, a mismatch that
affects the data visibility of a highly accessed item may
have a more negative effect on the user experience than
a mismatch on a seldom accessed item. Therefore, in the
scenario where it is possible to collect statistics regarding
which items and datacenters are more used, it is possible to
assign a weight ci,j to each metadata path PM

i,j , that reflects

the relative importance of that path for the business goals
of the application. Using these weights, we can now define
precisely an optimization criteria that should be followed
when setting up the serializers topology:

DEFINITION 2 (Weighted Minimal Mismatch). The config-
uration that better approximates the optimal visibility time
for data updates, considering the relative relevance of each
type of update, is the one that minimizes the weighted global
mismatch, defined as:

min
P

8i,j2V ci,j · mismatchi,j

5.5 Configuration Generator
The problem of finding a configuration that minimizes the
Weighted Minimal Mismatch criteria, among all possible
configurations that satisfy the constraints of the problem,
is NP-hard.2 Therefore, we have designed a heuristic that
approximates the optimal solution using a constraint solver
as a building block. We have modeled the minimization
problem captures by Definition 2 as a constraint problem
such that for a given tree, finds the optimal location of
serializers (for a given set of possible location candidates)
and the optimal (if any) propagation delays.

The proposed algorithm, depicted in Alg. 3, works as fol-
lows. Iteratively, starting with a full binary tree with only
two leaves (Alg. 3, line 3), generates all possible isomor-
phism classes of full binary trees with N labeled leaves (i.e.,
datacenters). The algorithm adds one labeled leaf (datacen-
ter) at each iteration until the number of leaves is equal to
the total number of datacenters. For a given full binary tree
T of f leaves, there exist 2⇤ f �1 isomorphic classes of full
binary trees with f+1 leaves. One can obtain a new isomor-
phic class by either inserting a new internal node within an
edge of T from which the new leaf hangs (Alg. 3, line 14),
or by creating a new root from which the new leaf and T
hang (Alg. 3, line 10). We could iterate until generating all
possible trees of N leaves. Nevertheless, in order to avoid
a combinatorial explosion (for nine datacenters there would
already be 2,027,025 possible trees), the algorithm selects
at each iteration the most promising trees and discards the
rest. In order to rank the trees at each iteration, we use the
constraint solver. Therefore, given a totally ordered list of
ranked trees, if the difference between the rankings of two
consecutive trees T1 and T2 is greater than a given thresh-
old, T2 and all following trees are discarded (Alg. 3, line 18).
At the last iteration, among all trees with N leaves, we pick
the one that produces the smallest global mismatch from the
optimal visibility times by relying on the constraint solver.

Note that Algorithm 3 always returns a binary tree. Nev-
ertheless, SATURN does not require the tree to be binary.
One can easily fuse two serializers into one if both are di-
rectly connected, placed in the same location, and the artif-
ical propagation delays among them are zero. Any of these

2 A reduction from the Steiner tree problem [35] can be used to prove this.

5.4 Configuring SATURN’s Metadata Service
The quality of the serialization served by SATURN to each
datacenter depends on how the service is configured. A SAT-
URN’s configuration defines: (i) the number of serializers to
use and where to place them; (ii) how these serializers are
connected (among each other and with datacenters); and (iii)
what delays (if any) should a serializer artificially add when
propagating labels (in order to match the optimal visibility
time). Let �ij denote the artificial delay added by serializer
i when propagating metadata to serializer j.

In practice, when deploying SATURN, one has not com-
plete freedom to select the geo-location of serializers. In-
stead, the list of potential locations for serializers is limited
by the availability of suitable points-of-presence that results
from business constraints. Therefore, the task of setting-up a
serializer network is based on:
• The set V of datacenters that need to be connected (we

denote N = |V | the total number of datacenters).
• The latencies of the bulk data transfer service among

these datacenters; latij denotes the latency between dat-
acenters i and j.

• The set W of potential locations for placing serializers
(M = |W |). Since each datacenter is a natural potential
serializer location, M � N . Let dij denote the latency
between two serializer locations i and j.
However, given a limited set of potential locations to

place serializers, it is unlikely (impossible in most cases) to
match the optimal label propagation latency for every pair of
datacenters. Therefore, the best we can aim when setting-up
SATURN is to minimize the mismatch among the achievable
label propagation latency and the optimal label propagation
latency. More precisely, consider that the path for a given
topology between two datacenters, i and j, denoted PM

i,j is
composed by a set of serializers PM

i,j = {Sk, ..., So}, where
Sk connects to datacenter i and So connects to datacenter j.
The latency of this path �M (i, j) is defined by the latencies
(d) between adjacent nodes in the path, plus any artificial
delays that may be added at each step, i.e.:

�M (i, j) =
P

Sk2PM
i,j\{So}

(dk,k+1 + �k,k+1)

and the mismatch between the resulting latency and the
optimal label propagation latency is given by:

mismatchi,j = |�M (i, j)��(i, j)|

Finally, one can observe that in general, the distribution
of client requests, among items and datacenters may not
be uniform, i.e., some items and some datacenters may be
more accessed than others. As a result, a mismatch that
affects the data visibility of a highly accessed item may
have a more negative effect on the user experience than
a mismatch on a seldom accessed item. Therefore, in the
scenario where it is possible to collect statistics regarding
which items and datacenters are more used, it is possible to
assign a weight ci,j to each metadata path PM

i,j , that reflects

the relative importance of that path for the business goals
of the application. Using these weights, we can now define
precisely an optimization criteria that should be followed
when setting up the serializers topology:

DEFINITION 2 (Weighted Minimal Mismatch). The config-
uration that better approximates the optimal visibility time
for data updates, considering the relative relevance of each
type of update, is the one that minimizes the weighted global
mismatch, defined as:

min
P

8i,j2V ci,j · mismatchi,j

5.5 Configuration Generator
The problem of finding a configuration that minimizes the
Weighted Minimal Mismatch criteria, among all possible
configurations that satisfy the constraints of the problem,
is NP-hard.2 Therefore, we have designed a heuristic that
approximates the optimal solution using a constraint solver
as a building block. We have modeled the minimization
problem captures by Definition 2 as a constraint problem
such that for a given tree, finds the optimal location of
serializers (for a given set of possible location candidates)
and the optimal (if any) propagation delays.

The proposed algorithm, depicted in Alg. 3, works as fol-
lows. Iteratively, starting with a full binary tree with only
two leaves (Alg. 3, line 3), generates all possible isomor-
phism classes of full binary trees with N labeled leaves (i.e.,
datacenters). The algorithm adds one labeled leaf (datacen-
ter) at each iteration until the number of leaves is equal to
the total number of datacenters. For a given full binary tree
T of f leaves, there exist 2⇤ f �1 isomorphic classes of full
binary trees with f+1 leaves. One can obtain a new isomor-
phic class by either inserting a new internal node within an
edge of T from which the new leaf hangs (Alg. 3, line 14),
or by creating a new root from which the new leaf and T
hang (Alg. 3, line 10). We could iterate until generating all
possible trees of N leaves. Nevertheless, in order to avoid
a combinatorial explosion (for nine datacenters there would
already be 2,027,025 possible trees), the algorithm selects
at each iteration the most promising trees and discards the
rest. In order to rank the trees at each iteration, we use the
constraint solver. Therefore, given a totally ordered list of
ranked trees, if the difference between the rankings of two
consecutive trees T1 and T2 is greater than a given thresh-
old, T2 and all following trees are discarded (Alg. 3, line 18).
At the last iteration, among all trees with N leaves, we pick
the one that produces the smallest global mismatch from the
optimal visibility times by relying on the constraint solver.

Note that Algorithm 3 always returns a binary tree. Nev-
ertheless, SATURN does not require the tree to be binary.
One can easily fuse two serializers into one if both are di-
rectly connected, placed in the same location, and the artif-
ical propagation delays among them are zero. Any of these

2 A reduction from the Steiner tree problem [35] can be used to prove this.

The goal is to build the tree such that metadata-
paths latencies (through the tree) match data-paths

minimize mismatch of
busiest paths

30

Metadata propagation: building the tree

Finding the optimal tree is modelled as a constraint
optimization problem

Input
 

 Data-paths average latencies
 

 Candidate locations for serializers (an latencies among them)  
 Access-patterns: to minimize the impact of mismatches

31

Example

3 421 1ms 1ms

10ms

b
c

a a concurrent to both b and c
c causally depends on b

10ms

32

Example

3 421 1ms 1ms

10ms

S1 S2 S3 S4

S5 S6

b
c

a a concurrent to both b and c
c causally depends on b

10ms

32

Example

3 421 1ms 1ms

10ms

S1 S2 S3 S4

S5 S6

S5 @ dc1 (or dc2)

S6 @ dc4 (or dc3)

b
c

a a concurrent to both b and c
c causally depends on b

10ms

32

Example

3 421 1ms 1ms

10ms

S1 S2 S3 S4

S5 S6

S5 @ dc1 (or dc2)

S6 @ dc4 (or dc3)

Time: 0

b
c

a a concurrent to both b and c
c causally depends on b

10ms

32

Example

3 421 1ms 1ms

10ms

S1 S2 S3 S4

S5 S6

S5 @ dc1 (or dc2)

S6 @ dc4 (or dc3)

Time: 02

b
c

a a concurrent to both b and c
c causally depends on b

10ms

32

Example

3 421 1ms 1ms

10ms

S1 S2 S3 S4

S5 S6

S5 @ dc1 (or dc2)

S6 @ dc4 (or dc3)

Time: 02

b
c

a a concurrent to both b and c
c causally depends on b

10ms

a

32

Example

3 421 1ms 1ms

10ms

S1 S2 S3 S4

S5 S6

S5 @ dc1 (or dc2)

S6 @ dc4 (or dc3)

Time: 02

b
c

a a concurrent to both b and c
c causally depends on b

10ms

a

32

Example

3 421 1ms 1ms

10ms

S1 S2 S3 S4

S5 S6

S5 @ dc1 (or dc2)

S6 @ dc4 (or dc3)

Time: 023

b
c

a a concurrent to both b and c
c causally depends on b

10ms

a

32

Example

3 421 1ms 1ms

10ms

S1 S2 S3 S4

S5 S6

S5 @ dc1 (or dc2)

S6 @ dc4 (or dc3)

Time: 023

b
c

a a concurrent to both b and c
c causally depends on b

10ms

a

32

Example

3 421 1ms 1ms

10ms

S1 S2 S3 S4

S5 S6

S5 @ dc1 (or dc2)

S6 @ dc4 (or dc3)

Time: 0234

b
c

a a concurrent to both b and c
c causally depends on b

10ms

a

b

32

Example

3 421 1ms 1ms

10ms

S1 S2 S3 S4

S5 S6

S5 @ dc1 (or dc2)

S6 @ dc4 (or dc3)

Time: 0234 5

b
c

a a concurrent to both b and c
c causally depends on b

10ms

a

b

32

Example

3 421 1ms 1ms

10ms

S1 S2 S3 S4

S5 S6

S5 @ dc1 (or dc2)

S6 @ dc4 (or dc3)

Time: 0234 5

b
c

a a concurrent to both b and c
c causally depends on b

10ms

a

b

32

Example

3 421 1ms 1ms

10ms

S1 S2 S3 S4

S5 S6

S5 @ dc1 (or dc2)

S6 @ dc4 (or dc3)

Time: 0234 5

b
c

a a concurrent to both b and c
c causally depends on b

10ms

a b

32

b

Example

3 421 1ms 1ms

10ms

S1 S2 S3 S4

S5 S6

S5 @ dc1 (or dc2)

S6 @ dc4 (or dc3)

Time: 0234 5

b
c

a a concurrent to both b and c
c causally depends on b

10ms

a

33

b

Example

3 421 1ms 1ms

10ms

S1 S2 S3 S4

S5 S6

S5 @ dc1 (or dc2)

S6 @ dc4 (or dc3)

Time: 0234 5 6

b
c

a a concurrent to both b and c
c causally depends on b

10ms

a

c

33

b

Example

3 421 1ms 1ms

10ms

S1 S2 S3 S4

S5 S6

S5 @ dc1 (or dc2)

S6 @ dc4 (or dc3)

Time: 0234 5 6 7

b
c

a a concurrent to both b and c
c causally depends on b

10ms

a

c

33

b

Example

3 421 1ms 1ms

10ms

S1 S2 S3 S4

S5 S6

S5 @ dc1 (or dc2)

S6 @ dc4 (or dc3)

Time: 0234 5 6 7

b
c

a a concurrent to both b and c
c causally depends on b

10ms

a

c

33

b

Example

3 421 1ms 1ms

10ms

S1 S2 S3 S4

S5 S6

S5 @ dc1 (or dc2)

S6 @ dc4 (or dc3)

Time: 0234 5 6 7

b
c

a a concurrent to both b and c
c causally depends on b

10ms

a

c

33

4
b

Example

321 1ms 1ms

10ms

S1 S2 S3 S4

S5 S6

S5 @ dc1 (or dc2)

S6 @ dc4 (or dc3)

Time: 0234 5 6 7

b
c

a a concurrent to both b and c
c causally depends on b

10ms

a

c

34

4
b

Example

321 1ms 1ms

10ms

S1 S2 S3 S4

S5 S6

S5 @ dc1 (or dc2)

S6 @ dc4 (or dc3)

Time: 0234 5 6 7…12

b
c

a a concurrent to both b and c
c causally depends on b

10ms

a

a

c

34

4
b

Example

321 1ms 1ms

10ms

S1 S2 S3 S4

S5 S6

S5 @ dc1 (or dc2)

S6 @ dc4 (or dc3)

Time: 0234 5 6 7…12

b
c

a a concurrent to both b and c
c causally depends on b

10ms

a

a

c

34

4
b

Example

321 1ms 1ms

10ms

S1 S2 S3 S4

S5 S6

S5 @ dc1 (or dc2)

S6 @ dc4 (or dc3)

Time: 0234 5 6 7…12

b
c

a a concurrent to both b and c
c causally depends on b

10ms

a

a

c

a

34

4
b

Example

321 1ms 1ms

10ms

S1 S2 S3 S4

S5 S6

S5 @ dc1 (or dc2)

S6 @ dc4 (or dc3)

Time: 0234 5 6 7…12

b
c

a a concurrent to both b and c
c causally depends on b

10ms

a

a

c

a

34

4
b

Example

321 1ms 1ms

10ms

S1 S2 S3 S4

S5 S6

S5 @ dc1 (or dc2)

S6 @ dc4 (or dc3)

Time: 0234 5 6 7…12

b
c

a a concurrent to both b and c
c causally depends on b

10ms

a

a

c

a

34

b -> 5  
c -> 7

a -> 12

4
b

Example

321 1ms 1ms

10ms

S1 S2 S3 S4

S5 S6

S5 @ dc1 (or dc2)

S6 @ dc4 (or dc3)

Time: 0234 5 6 7…12 …14

b
c

a a concurrent to both b and c
c causally depends on b

10ms

a

a

c

a

b

34

b -> 5  
c -> 7

a -> 12

4
b

Example

321 1ms 1ms

10ms

S1 S2 S3 S4

S5 S6

S5 @ dc1 (or dc2)

S6 @ dc4 (or dc3)

Time: 0234 5 6 7…12 …14

b
c

a a concurrent to both b and c
c causally depends on b

10ms

a

a

c

a

b

34

b -> 5  
c -> 7

a -> 12

4
b

Example

321 1ms 1ms

10ms

S1 S2 S3 S4

S5 S6

S5 @ dc1 (or dc2)

S6 @ dc4 (or dc3)

Time: 0234 5 6 7…12 …14

b
c

a a concurrent to both b and c
c causally depends on b

10ms

a

a

c

a

b

34

b -> 5  
c -> 7

a -> 12

2 4
b

Example

31 1ms 1ms

10ms

S1 S2 S3 S4

S5 S6

S5 @ dc1 (or dc2)

S6 @ dc4 (or dc3)

Time: 0234 5 6 7…12 …14

b
c

a a concurrent to both b and c
c causally depends on b

10ms

a

c

a

b

35

2 4
b

Example

31 1ms 1ms

10ms

S1 S2 S3 S4

S5 S6

S5 @ dc1 (or dc2)

S6 @ dc4 (or dc3)

Time: 0234 5 6 7…12 …14…16

b
c

a a concurrent to both b and c
c causally depends on b

10ms

a

c

a

b

c

35

2 4
b

Example

31 1ms 1ms

10ms

S1 S2 S3 S4

S5 S6

S5 @ dc1 (or dc2)

S6 @ dc4 (or dc3)

Time: 0234 5 6 7…12 …14…16

b
c

a a concurrent to both b and c
c causally depends on b

10ms

a

c

a

b

c

35

2 4
b

Example

31 1ms 1ms

10ms

S1 S2 S3 S4

S5 S6

S5 @ dc1 (or dc2)

S6 @ dc4 (or dc3)

Time: 0234 5 6 7…12 …14…16

b
c

a a concurrent to both b and c
c causally depends on b

10ms

a

c

a

b

c

35

2 4
b

Example

31 1ms 1ms

10ms

S1 S2 S3 S4

S5 S6

S5 @ dc1 (or dc2)

S6 @ dc4 (or dc3)

Time: 0234 5 6 7…12 …14…16

b
c

a a concurrent to both b and c
c causally depends on b

10ms

a

c

a

b

c

35

36

…put(a1)

data

labels

3 N21Client 1

data centersa1

…put(a1)

data

labels

3 N21Client 1

data centersa1

Saturn requires each
datacenter
to output a

SERIAL
sequence of updates

38

each datacenter has many machines

Eunomia

how to serialize updates performed on different
machines without loosing performance?

usually one relies on sequencers that limit
concurrency

conceived to replace sequencers used to
serialize updates in replicated storage systems

39

totally orders—consistently with causality—
local updates, before shipping them to Saturn

and other dcs

the ordering is done in the background, out of
client’s critical path

Eunomia

40

A CB

Sequencer

41

A CB

Eunomia

42

put(a) put(b)

A CB

42

put(a) put(b)

A CB

42

put(a) put(b)

1 1

A CB

42

put(a) put(b)

1

1 1

1

A CB

43

put(c)

1 1

A CB

43

put(c)

1 1

2

2

A CB

44

1 1

put(d)

2

A CB

44

1 1

put(d)

1

12

A CB

45

1 1 12

put(e)

A CB

45

1 1 12

put(e)

2

2

A CB

46

1 1 12 2

A CB

47

1 1 12 2

A CB

48

1 1 1 2 2

A CB

48

49

1

1

1

2 2

A CB

50

2 2

put(f)

A CB

50

2 2

put(f)

3

3

A CB

51

+

Evaluation

• How important is the configuration of Saturn?

• Can Saturn+Eunomia optimize both throughput and
data freshness simultaneously?

Evaluation: goals

52

• How Eunomia compares to sequencers?

• Why Saturn’s genuine partial replication matters?

• How important is the configuration of Saturn?

• Can Saturn+Eunomia optimize both throughput and
data freshness simultaneously?

Evaluation: goals

53

• How Eunomia compares to sequencers?

• Why Saturn’s genuine partial replication matters?

Saturn vs state-of-the-art

Partitioning among 7 data centers  
Replication factor min. 2 max. [2,5]  
[J. M. Pujol et al. The little engine(s) that could: Scaling online social networks. SIGCOMM ’10]

Workload based on real social network workloads  
[F. Benevenuto et al. Characterizing user behavior in online social networks. ICM ’09]

Public Facebook dataset  
[B. Viswanath et al. On the evolution of user interaction in Facebook. WOSN ’09]

N.

(O

T

(N.

OS

(N.
(Ir

N. Ir Fr

54

Saturn vs state-of-the-art  
Throughput

 0
 20000
 40000
 60000
 80000

 100000
 120000

5 4 3 2T
h

ro
u

g
h

p
u

t
(o

p
s
/s

e
c
) Eventual

Saturn
GentleRain

Cure

max replication degree

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

55

Saturn vs state-of-the-art  
Throughput

 0
 20000
 40000
 60000
 80000

 100000
 120000

5 4 3 2T
h

ro
u

g
h

p
u

t
(o

p
s
/s

e
c
) Eventual

Saturn
GentleRain

Cure

max replication degree

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

Saturn exhibits a
throughput very close to

eventual consistency
55

Saturn vs state-of-the-art  
Throughput

 0
 20000
 40000
 60000
 80000

 100000
 120000

5 4 3 2T
h

ro
u

g
h

p
u

t
(o

p
s
/s

e
c
) Eventual

Saturn
GentleRain

Cure

max replication degree

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

Saturn exhibits a
throughput very close to

eventual consistency

Cure significantly
penalizes throughput due

to the metadata size

55

Saturn vs state-of-the-art  
Data freshness: average

 0
 20
 40
 60
 80

 100
 120
 140
 160

R
e
m

o
te

 v
is

ib
ili

ty
 la

te
n
cy

 (
m

s)

56

Eve
ntual

Satu
rn

Gen
tle

RainCure

Saturn vs state-of-the-art  
Data freshness: average

 0
 20
 40
 60
 80

 100
 120
 140
 160

R
e
m

o
te

 v
is

ib
ili

ty
 la

te
n
cy

 (
m

s)

56

Eve
ntual

Satu
rn

Gen
tle

RainCure

Still better than Cure
that uses vector clocks

and very close to eventual

• How important is the configuration of Saturn?

• Can Saturn+Eunomia optimize both throughput and
data freshness simultaneously?

Evaluation: goals

57

• How Eunomia compares to sequencers?

• Why Saturn’s genuine partial replication matters?

Saturn 
Genuine partial replication matters

58

N. Virgina Ireland Sydney

• Sydney receives updates from Ireland
• Ireland updates depend on N. Virginia updates
• Sydney does not replicate all N. Virginia data

Saturn 
Genuine partial replication matters

59

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 40 80 120 160 200 240 280

C
D

F

Remote update visibility (milliseconds)

Saturn
Vector

Latency of updates from Ireland when applied at Sydney

Saturn 
Genuine partial replication matters

59

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 40 80 120 160 200 240 280

C
D

F

Remote update visibility (milliseconds)

Saturn
Vector

Latency of updates from Ireland when applied at Sydney

Updates from Ireland are
stalled until metadata is
received from N. Virginia

• How important is the configuration of Saturn?

• Can Saturn+Eunomia optimize both throughput and
data freshness simultaneously?

Evaluation: goals

60

• How Eunomia compares to sequencers?

• Why Saturn’s genuine partial replication matters?

Saturn configuration matters 

NC O I F T S
NV 37 ms 49 ms 41 ms 45 ms 73 ms 115 ms
NC - 10 ms 74 ms 84 ms 52 ms 79 ms
O - - 69 ms 79 ms 45 ms 81 ms
I - - - 10 ms 107 ms 154 ms
F - - - - 118 ms 161 ms
T - - - - - 52 ms

Table 1: Average latencies (half RTT) among Amazon EC2
regions: N. Virginia (NV), N. California (NC), Oregon (O),
Ireland (I), Frankfurt (F), Tokyo (T), and Sydney (S)

In order to compare SATURN with other solutions from
the state-of-the-art (data services), we attached SATURN to
an eventually consistent geo-replicated storage system we
have built. Throughout the evaluation, we use this eventu-
ally consistent data service as the baseline, as it adds no
overheads due to consistency management, to better under-
stand the overheads introduced by SATURN. Note that this
baseline represents a throughput upper-bound and a latency
lower-bound. Thus, when we refer to the optimal visibility
latency throughout the experiments, we are referring to the
latencies provided by the eventually consistent system.

Implementation. Our SATURN prototype implements all
functionality described in the paper. It has been built using
the Erlang/OTP programming language. In our prototype,
gears rely on physical clocks to generate monotonically in-
creasing timestamps. To balance the load among frontends at
each datacenter, we use Riak Core [14], an open source dis-
tribution platform. The optimization problem (Definition 2)
used to configure SATURN is modeled using OscaR [44], a
Scala toolkit for solving Operations Research problems.

Setup. We use Amazon EC2 m4.large instances run-
ning Ubuntu 12.04 in our experiments. Each instance has
two virtual CPU cores, and 8 GB of memory. We use seven
different regions in our experiments. Table 1 lists the aver-
age latencies we measured among regions. Our experiments
simulate one datacenter per region. Clients are co-located
with their preferred datacenter in separate machines. Each
client machine runs its own instance of a custom version of
Basho Bench [13], a load-generator and benchmarking tool.
Each client eagerly sends requests to its preferred datacen-
ter with zero thinking time. We deploy as many clients as
necessary in order to reach the system’s maximum capacity,
without overloading it. Each experiment runs for more than
5 minutes. In our results, the first and the last minute of each
experiment are ignored to avoid experimental artifacts. We
measure the visibility latencies of remote update operations
by storing the physical time at the origin datacenter when the
update is applied locally, and subtracting it from the physi-
cal time at the destination datacenter when the update be-
comes visible. To reduce the errors due to clock skew, phys-
ical clocks are synchronized using the NTP protocol [43]
before each experiment, making the remaining clock skew
negligible in comparison to inter-datacenter travel time.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

C
D

F

Remote update

P-conf

 0 100 200 300 400 500
visibility (milliseconds)

M-conf S-conf

Figure 4: Left: Ireland to Frankfurt (10ms); Right: Tokyo to
Sydney (52ms)

7.1 SATURN Configuration Matters
We compare different configurations of SATURN to bet-
ter understand their impact on the system performance.
We compare three alternative configurations: (i) a single-
serializer configuration (S), (ii) a multi-serializer configu-
ration (M), and (iii) a peer-to-peer version of SATURN that
relies on the conservative label’s timestamp order to apply
remote operations (P). We focus on the visibility latencies
provided by the different implementations.

For the S-configuration, we placed the serializer in Ire-
land. For the M-configuration, we build the configuration
tree by relying on Algorithm 5.4. We run an experiment with
a read dominant workload (90% reads). Figure 4 shows the
cumulative distribution of the latency before updates origi-
nating in Ireland become visible in Frankfurt (left plot) and
before updates originating in Tokyo become visible in Syd-
ney (right plot). Results show that both the S and M config-
urations provide comparable results for updates being repli-
cated in Frankfurt. This is because we placed the serializer
of the S-configuration in Ireland, and therefore, the prop-
agation of labels is done efficiently among these two re-
gions. Unsurprisingly, when measuring visibility latencies
before updates originating in Tokyo become visible in Syd-
ney, the S-configuration performs poorly because labels have
to travel from Tokyo to Ireland and then from Ireland to
Sydney. Plus, results show that the P-configuration, that re-
lies on the label’s timestamp order, is not able to provide
low visibility latencies in these settings. This is expected as,
when tracking causality with a single scalar, latencies tend to
match the longest network travel time (161ms in this case)
due to false dependencies. In turn, the M-configuration is
able to provide significantly lower visibility latencies to all
locations (deviating only 8.2ms from the optimal on aver-
age).

7.2 Impact of Latency Variability on SATURN

The goal of this section is to better understand how changes
in the link latency affect SATURN’s performance. We have
just seen that the correct configuration of the serializers’ tree
has an impact on performance. Therefore, if changes in the
link latencies are large enough to make the current configu-
ration no longer suitable, and these changes are permanent,
a reconfiguration of SATURN should be triggered. In prac-
tice, transient changes in the link latencies are unlikely to

Ireland Frankfurt Tokyo Sydney

Ireland to Frankfurt Tokyo to Sydney

Saturn configuration matters 

 0

 20000

 40000

 60000

 80000

 100000

 120000

8 32 128 512 2048

(a) Value size in bytes

50:50 75:25 90:10 99:1

Eventual Saturn

(b) Read:Write ratio

exponential proportional uniform full

GentleRain Cure

(c) Correlation distribution

0% 5% 10% 20% 40%

(d) Percentage of remote reads

Figure 5: Dynamic workload throughput experiments.

 0
 10
 20
 30
 40
 50
 60

0 25 50 75 100 125

E
xt

ra
 v

is
ib

ili
ty

 la
te

n
cy

 (
m

s)

Injected delay (ms)

T1
T2

Figure 6: Impact of latency variability on remote update
visibility in SATURN.

justify a reconfiguration; therefore we expect their effect on
performance to be small.

To validate this assumption, we set a simple experiment
with three datacenters, each located in a different EC2 re-
gion: N. Carolina, Oregon and Ireland. For the experiment,
we artificially inject extra latency between N. Carolina and
Oregon datacenters (averaged measured latency is 10ms).
From our experience, we expect the latency among EC2
regions to deviate from its average only slightly and tran-
siently. Nevertheless, to fully understand the consequences
of latency variability, we also experimented with unrealisti-
cally large deviations (up to 125ms).

Figure 6 shows the extra remote visibility latency that two
different configurations of SATURN add on average when
compared to an eventually consistent storage system which
makes no attempt to enforce causality. Both configurations,
T1 and T2, use a single serializer: configuration T1 places
the serializer in Oregon, representing the optimal configura-
tion under normal conditions and configuration T2, instead,
places the serializer in Ireland.

As expected, under normal conditions, T1 performs sig-
nificantly better than T2, confirming the importance of
choosing the right configuration. As we add extra latency,
T1 degrades its performance, but only slightly. One can ob-
serve that, in fact, slight deviations in the averaged latency
have no significant impact in SATURN: even with an extra
delay of 25ms (more than twice the average delay), T1 only
adds 14ms of extra visibility latency on average. Interest-
ingly, it is only with more than 55ms of injected latency
that T2 becomes the optimal configuration, exhibiting lower
remote visibility latency than T1. Observing a long and sus-
tained increase of 55ms of delay on a link that averages
10ms is highly unlikely. Indeed, this scenario has the same
effect of migrating the datacenter from N. Carolina to São
Paulo. Plus, if such large deviation becomes the norm, sys-

tem operators can always rely on SATURN’s reconfiguration
mechanism to change SATURN configuration.

7.3 SATURN vs. the State-of-the-art
We compare the performance of SATURN against eventual
consistency and against the most performant causally con-
sistent storage systems in the state-of-the-art.

7.3.1 GentleRain and Cure
We consider GentleRain [26] and Cure [3] the current state-
of-the-art. We have also experimented with solutions based
on explicit dependency checking such as COPS [39] and
Eiger [40]. Nevertheless, we concluded that approaches
based on explicit dependency checking are not practical
under partial geo-replication. Their practicability depends
on the capability of pruning client’s list of dependencies
after update operations due to the transitivity rule of causal-
ity [39]. Under partial geo-replication, this is not possible,
causing client’s list of dependencies to potentially grow up
to the entire database.

At its core, both GentleRain and Cure implement causal
consistency very similarly: they rely on a background stabi-
lization mechanism that requires all partitions in the system
to periodically exchange metadata. This equips each parti-
tion with sufficient information to locally decide when re-
mote updates can be safely–with no violation of causality—
made visible to local clients. In our experiments, GentleRain
and Cure’s stabilization mechanisms run every 5ms follow-
ing the authors’ specifications. The interested reader can find
more details in the original papers [3, 26]. We recall that
SATURN does not require such a mechanism, as the order in
which labels are delivered to each datacenter already deter-
mines the order in which remote updates have to be applied.

The main difference between GentleRain and Cure re-
sides in the way causal consistency is tracked. While Gen-
tleRain summarizes causal dependencies in a single scalar,
Cure uses a vector clock with an entry per datacenter. This
enables Cure to track causality more precisely—lowering
remote visibility latency—but the metadata management
increases the computation and storage overhead—harming
throughput. Concretely, by relying on a vector, Cure remote
update visibility latency lower-bound is determined by the
latency between the originator of the update and the remote
datacenter. Differently, in GentleRain, the lower-bound is

N. Carolina Oregon Ireland N. Carolina Oregon Ireland

N. Carolina Oregon

• How important is the configuration of Saturn?

• Can Saturn+Eunomia optimize both throughput and
data freshness simultaneously?

Evaluation: goals

63

• How Eunomia compares to sequencers?

• Why Saturn’s genuine partial replication matters?

64

Evaluation

 0
 50

 100
 150
 200
 250
 300
 350
 400

Th
ro

ug
hp

ut
 (K

op
s/

se
c) Eunomia 15

Eunomia 30
Eunomia 45
Eunomia 60
Eunomia 75
Sequencer

maximum throughput achievable by
Eunomia vs a classical sequencer

64

Evaluation

 0
 50

 100
 150
 200
 250
 300
 350
 400

Th
ro

ug
hp

ut
 (K

op
s/

se
c) Eunomia 15

Eunomia 30
Eunomia 45
Eunomia 60
Eunomia 75
Sequencer

maximum throughput achievable by
Eunomia vs a classical sequencer

x7.7

Other features…

• On-line reconfiguration protocols
• Efficient migration of clients among data centers

65

+

• Impact of stragglers
• More experiments

• Support for fault-tolerance

Check the papers for
more details.

66

+

EUROSYS 2017 ATC 2017

Take-away messages

• It is possible to preserve concurrency inside a DC, and to
capture causality with a single scalar, using an ordering
service that is out the the client’s critical path

• These scalar clocks can be propagated using tree-based
dissemination, that can effectively mitigate the impact of
false dependencies

• Combined, they allow the optimisation of both
throughput and data freshness

67

+

